GPLUS EDUCATION

ъ.	di Eco		
Dat Tim			CHEMISTRY
Mai		MODYNAMICS	
	Single Co	orrect Answer Type	
1.	Standard enthalpy of vapourisation $\Delta_{\mathrm{vap.}}H^{\Theta}$	for water at 100°C is 40.66 k	$[mol^{-1}]$. The internal energy of
	vapourisation of water at 100°C (in kJ mol ⁻¹)		
	a) +43.76 b) +40.66	c) +37.56	d) -43.76
2.	The factor $\left(\frac{\partial Q}{\partial T}\right)_{P} - \left(\frac{\partial Q}{\partial T}\right)_{V}$ is equal to :	,	,
	• •	D.	
	a) γ b) R	c) $\frac{R}{M}$	d) ΔnRT
3.	Heat of combustion of a substance:	М	
٥.	a) Is always positive	b) Is always negative	
	c) Is equal to heat of formation	d) Nothing can be said	without reaction
4.	The heat of formations of $CO(g)$ and $CO_2(g)$ as		
7.	combustion of carbon monoxide will be	20.1 Kear and 71.0 Kear 1	espectively. The near of
	a) -67.6 kcal b) 36.5 kcal	c) -36.5 kcal	d) –46.5 kcal
5.	Which reaction either endothermic or exotl	•	
٥.	spontaneously?	merime characteristics has th	e greater chance or occurring
	a) One in which entropy change is positive	n -	
	b) One is which entropy change is positive		
	c) One in which Gibbs energy change is negative	ive	
	d) One in which equilibrium has been establis		
6.	Net work done by the system in a cyclic proce		
0.	a) Zero b) ΔU	c) Δ <i>H</i>	d) <i>q</i>
7.	A thermodynamic quantity is that:	c) An	a, q
, ·	a) Which is used in thermochemistry		
	b) Which obeys all the laws of thermodynamic	rs	
	c) Quantity which depends only on the state of		
	d) Quantity which is used in measuring therm		
8.	The Gibbs energy change for a reversible reac	_	
	a) Zero b) Small positive	c) Small negative	d) Large positive
9.	If, $S + O_2 \rightarrow SO_2$; $\Delta H = -298.2 \text{ kJ}$ (i)	.,	,g.
	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$; $\Delta H = -98.7 \text{ kJ} \dots (ii)$		
	$SO_3 + H_2O \rightarrow H_2SO_4$; $\Delta H = -130.2 \text{ kJ} \dots (i)$	ii)	
	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \ \Delta H = -227.3 \text{ kJ} (iv)$)	
	The enthalpy of formation of H ₂ SO ₄ at 298 K v	will be:	
	a) – 754.4 kJ		
	b) + 320.5 kJ		
	c) -650.3 kJ		
	d) – 433.7 kJ		
10.	The heat required to raise the temperature of	a body by 1 K is called	
	a) Specific heat b) Thermal capacit	y c) Water equivalent	d) None of these
11.	A system absorbs 10 kJ of heat and does 4 kJ of	of work. The internal energy of	the system

	 a) Increases by 6 kJ Which of the following st a) ΔH is positive for exo b) ΔH is negative for end c) The enthalpy of fusion 	thermic reactions lothermic reactions	c) Decreases by 14 kJ	d) Increases by 14 kJ
13.	d) The heat of neutraliza The temperature at which	ition of strong acid with s ch the reaction,	trong base is always the sam	e
	$Ag_2O(s) \to 2Ag(s) + \frac{1}{2}O(s)$	0 ₂ (g)		
	-		$\Delta S = 0.066 \mathrm{kJ} \mathrm{K}^{-1} \mathrm{mol}^{-1}$.	
11	a) 462.12 K	b) 362.12 K	c) 262.12 K	d) 562.12 K
14.	During an adiabatic proca) Pressure is maintaine			
	b) Gas is isothermally ex			
	c) There is perfect heat i	=		
	d) The system changes h			
15.		_	$d H^+ + OH^- = H_2O + a_2.th$	en the enthalpy change for
		$= CH_3COO^- + H^+$ is equ		1,7
	a) $q_1 + q_2$	b) $q_1 - q_2$	c) $q_2 - q_1$	d) $-q_1 - q_2$
16.	Which of the following s	tatements is true? The en	tropy of the universe	
	a) Increases and tends to	owards maximum value	b) Decreases and tends t	to be zero
	c) Remains constant		d) Decreases and increas	ses with a periodic rate
17.	The standard change is (ion,	
	$H_2O \rightleftharpoons H^+ + OH^- \text{ at } 25^\circ$			D 400 L
10	a) 100 kJ	b) -90 kJ	c) 90 kJ	d) –100 kJ
18.	Which is not characteris	tic of thermochemical eq	ation?	d) –100 kJ
18.	Which is not characteris a) It indicates physical s	tic of thermochemical equate of reactants and products	uation? lucts	d) –100 kJ
18.	Which is not characterista) It indicates physical stable It indicates whether the	tic of thermochemical eq tate of reactants and prod he reaction is exothermic	uation? lucts	d) —100 kJ
18.	Which is not characteris a) It indicates physical sb) It indicates whether tc) It indicates allotrope	tic of thermochemical eq tate of reactants and proc he reaction is exothermic of reactants if present	uation? lucts or endothermic	d) –100 kJ
	Which is not characteris a) It indicates physical sb) It indicates whether tc) It indicates allotrope	tic of thermochemical eq tate of reactants and prod he reaction is exothermic	uation? lucts or endothermic	d) —100 kJ
	Which is not characterista). It indicates physical stability indicates whether the condition of the conditio	tic of thermochemical eq tate of reactants and proc he reaction is exothermic of reactants if present	nation? lucts or endothermic	d) —100 kJ
	Which is not characterista). It indicates physical states b). It indicates whether that it indicates allotrope and it indicates whether refer the reaction, $H_2(g) + Cl_2(g) \rightarrow$	tic of thermochemical eq tate of reactants and proc he reaction is exothermic of reactants if present eaction would occur or n	uation? lucts or endothermic ot i)	d) —100 kJ
	Which is not characteristally also indicates physical states all times all times all the states	tic of thermochemical equation tate of reactants and proche reaction is exothermical expectants if present eaction would occur or number of the content of	uation? lucts or endothermic ot i)	d) —100 kJ
	Which is not characterista). It indicates physical states b). It indicates whether the conditions of the indicates allotrope of the indicates whether refer the reaction, $H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \rightarrow 4HCl(g) \rightarrow H_2(g) + 4HCl(g) \rightarrow 4HCl($	tic of thermochemical equate of reactants and proche reaction is exothermical of reactants if present eaction would occur or number $2HCl(g) + x_1 kJ \dots (local bounds)$ $Cl_2(g) - x_2 kJ \dots (local bounds)$ tatement is correct?	uation? lucts or endothermic ot i)	d) —100 kJ
	Which is not characteristally also indicates physical states all tindicates whether the condition of the indicates all through the indicates whether respectively. The indica	tic of thermochemical equate of reactants and proche reaction is exothermical of reactants if present eaction would occur or number $2HCl(g) + x_1 kJ \dots (local bounds)$ $Cl_2(g) - x_2 kJ \dots (local bounds)$ tatement is correct?	uation? lucts or endothermic ot i)	d) —100 kj
	Which is not characterista). It indicates physical states b). It indicates whether the control of the indicates allotrope of the distribution of the reaction, $H_2(g) + Cl_2(g) \rightarrow H_2(g) + H_2(g) \rightarrow H_2(g) \rightarrow H_2(g) + H_2(g) + H_2(g) \rightarrow H_2(g) + H_2(g) \rightarrow H_$	tic of thermochemical equate of reactants and proche reaction is exothermical of reactants if present eaction would occur or number $2HCl(g) + x_1 kJ \dots (local bounds)$ $Cl_2(g) - x_2 kJ \dots (local bounds)$ tatement is correct?	uation? lucts or endothermic ot i)	d) —100 kJ
19.	Which is not characterista) It indicates physical stability in the stability of the stabil	tic of thermochemical equate of reactants and proche reaction is exothermical of reactants if present eaction would occur or number $2HCl(g) + x_1 kJ \dots (l_2(g) - x_2 kJ \dots (l_2(g) - x_2 kJ \dots (l_2(g) + x_2(g) + x_2 kJ \dots (l_2(g) + x_2 kJ \dots (l_$	uation? lucts or endothermic ot i)	d) —100 kJ
19.	Which is not characterista). It indicates physical stable it indicates whether the conditions of the indicates whether the conditions of the indicates whether respectively. It indicates whether respectively. It indicates whether respectively. For the reaction, $H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \rightarrow 2HCl(g) \rightarrow H_2(g) + 4HCl(g) \rightarrow H_2(g) \rightarrow H_2(g$	tic of thermochemical equate of reactants and proche reaction is exothermical eaction would occur or number of the reaction would occur or number of the color o	uation? lucts or endothermic ot i)	d) —100 kJ
19.	Which is not characterista) It indicates physical stable It indicates whether the conditions of the indicates allotrope of the indicates whether refer the reaction, $H_2(g) + Cl_2(g) \rightarrow H_2(g) + H_2(g$	tic of thermochemical equate of reactants and proche reaction is exothermical of reactants if present eaction would occur or number of $x_1 + x_2 + x_3 + x_4 + x_5 + x$	uation? lucts or endothermic ot i)	d) —100 kj
19.	Which is not characterista) It indicates physical stability in the stability of the stabil	tic of thermochemical equate of reactants and proche reaction is exothermical of reactants if present eaction would occur or number of the control of the control occur	uation? lucts or endothermic ot i)	d) —100 kj
19.	Which is not characteristally also indicates physical states all tindicates whether the conditions all tindicates all otrope of the distribution of the reaction, $H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \rightarrow H_2(g) + Which of the following states along the following states along$	tic of thermochemical equate of reactants and proche reaction is exothermic of reactants if present eaction would occur or number of $x_1 + x_2 + x_3 + x_4 + x_5 + x_5$	uation? lucts or endothermic ot i)	d) —100 kj
19. 20.	Which is not characterista) It indicates physical stable It indicates whether the control of the indicates allotrope of the distribution of the following stable x_1 and x_2 are numerically x_1 and x_2 are numerica	tic of thermochemical equate of reactants and proche reaction is exothermical of reactants if present eaction would occur or number of $x_1 + x_2 + x_3 + x_4 + x_5 + x_5 + x_6 + x$	laction? lucts or endothermic ot i)	d) —100 k)
19. 20.	Which is not characteristally also indicates physical states all tindicates whether the conditions all tindicates all otrope of the distribution of the reaction, $H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \rightarrow H_2(g) + Which of the following states along the following states along$	tic of thermochemical equate of reactants and proche reaction is exothermical of reactants if present eaction would occur or number of $x_1 + x_2 + x_3 + x_4 + x_5 + x_5 + x_6 + x$	laction? lucts or endothermic ot i)	d) —100 kJ

22. An exothermic reaction is one in which the reacting substancesa) Have more energy than the productsb) Have le

b) Have less energy than the products

c) Are at a higher temperature than the product

d) None of the above

23.	Heat energy change during the chemical reaction, CC	$0 + \frac{1}{2} O_2 \rightarrow CO_2$ is known.	as:
		2 do la monta	us :
	a) Heat of combustion of COb) Latent heat of CO₂		
	c) Latent heat of CO ₂		
	d) Heat of formation of CO ₂		
24		Jand O.E.M.U. CO., colution	as respectively when mived
24.	Under the same conditions how many mL of 1 <i>M</i> KOI		ns, respectively when mixed
	for a total volume of 100 mL produce the highest rise	-	1) 50 50
25	a) 67:33 b) 33:67	c) 40:60	d) 50 : 50
25.	The first law of thermodynamic is expressed as		
	a) $q - W = \Delta E$ b) $\Delta E = q - W$	=	-
26.	One mole of a non-ideal gas undergoes a change of statement a change in internal energy, $\Delta U = 30.0$ L atm. The change at 40.0	-	-
	b) 42.3		
	c) 44.0		
	d) Not defined, because pressure is not constant		
27.	Which one of the following is an exothermic read	rtion?	
	a) $N_2(g) + O_2(g) + 180.8kJ \rightarrow 2NO(g)$	b) $N_2(g) + 3H_2(g) - 92$	$V_{\rm M} \rightarrow 2NH_{\star}(\sigma)$
	c) $C(g) + H_2O \rightarrow CO(g) + H_2(g) - 131.1kJ$	d) C(graphite) + $2S(s)$	
20		a) C(grapinte) + 23(3)	$\rightarrow CS_2(i) - 91.9K$
28.	If liquids <i>A</i> and <i>B</i> from an ideal solution, the:		
	a) Enthalpy of mixing is zero		
	b) Entropy of mixing is zero		
	c) Free energy of mixing is zero	l	
20	d) Free energy as well as the entropy of mixing are e	ach zero	
29.	In which of the following cases entropy decreases?		
	a) Solid changing to liquidb) Expansion of a gas	ATION	
	c) Crystals dissolve	MITOM	
	d) Polymerisation		
30	For the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$: ΔH is		
50.	a) $\Delta E - 2RT$ b) $\Delta E - RT$	c) $\Delta E + RT$	d) $\Delta E + 2RT$
31	When one mole of monoatomic ideal gas at T temper		
51.	external pressure of 1 atm change in volume is from	_	_
		_	
	a) $\frac{T}{2^{(2/3)}}$ b) $T + \frac{2}{3 \times 0.0821}$	c) <i>T</i>	d) $T - \frac{2}{3 \times 0.0821}$
32.	In the combustion of 2.0 g of methane, 25 kcal heat is	s liberated. Heat of combus	
	a) 150 kcal b) 200 kcal	c) 250 kcal	d) 350 kcal
33.	1 mole of an ideal gas at 25°C is subjected to expand	d reversibly ten times of its	s initial volume. The change
	in entropy of expansion is:		
	a) $19.15 \mathrm{JK^{-1}mol^{-1}}$ b) $16.15 \mathrm{JK^{-1}mol^{-1}}$	c) 22.15 JK ⁻¹ mol ⁻¹	d) None of these
34.	The heat of formation (ΔH_f) of $H_2O(l)$ is equal to:		
	a) Zero		
	b) Molar heat of combustion of $H_2(l)$		
	c) Molar heat of combustion of H ₂ (g)		
	d) Sum of heat of formation of $H_2O(g)$ and $O_2(g)$		
35.	The entropy change for the reaction given below,		
	$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$		
	Isat 300 K. Standard entropies of $H_2(g)$, $O_2(g)$	and $H_2O(l)$ are 126.6.2	01.20 and 68.0 [K ⁻¹ mol ⁻¹
	1 2(0), 2(0)	- </td <td>,</td>	,

respectively. a) $-318.4 \, \text{JK}^{-1} \, \text{mol}^{-1}$ b) $318.4 \, \text{JK}^{-1} \, \text{mol}^{-1}$ c) $31.84 \, \text{JK}^{-1} \, \text{mol}^{-1}$ d) None of these 36. Heat of combustion ΔH for C(s), $H_2(g)$ and $CH_4(g)$ are -94, -68 and -213 kcal/mole then ΔH for C(s) + $2H_2(g) \rightarrow CH_4(g)is$: a) -17 kcal b) -111 kcal c) -170 kcal d) -85 kcal 37. A positive change in enthalpy occurs in: a) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g)$ b) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ c) $MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$ d) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$ 38. A gas expands isothermally and reversibly. The work done by the gas is: b) Minimum c) Maximum d) Equal to work done 39. What is Δn for combustion of 1 mole of benzene, when both the reactants and products are gas at 298 K a) 0 b) 1 c) 0.5 d) 1.5 40. Internal energy and pressure of a gas of unit volume are related as: a) $P = \frac{2}{3}U$ b) $P = \frac{3}{2}U$ d) P = 2U41. A reaction accompanied with the absorption of energy is: a) Burning of a candle b) Rusting of iron c) Electrolysis of water d) Digestion of food 42. The second law of thermodynamics introduced the concept of: a) Third law of thermodynamics b) Work c) Entropy d) Internal energy 43. The enthalpy change is negative for : a) $Cl^{-}(g) + aq \rightarrow Cl^{-}(aq)$ b) $Cl(g) \rightarrow Cl^{+}(g) + e$ c) $\frac{1}{2}$ Cl₂(g) \rightarrow Cl(g) d) $Cl_2(l) \rightarrow Cl_2(g)$ 44. Equal volumes of monoatomic and diatomic gases at same initial temperature and pressure are mixed. The ratio of specific heats of the mixture (C_p/C_v) will be d) 1.2 c) 1.67 45. If, $C(s) + O_2(g) \rightarrow CO_2(g)$, $\Delta H = -393.5$ kJ and $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g), \Delta H = -283.5 \text{ kJ},$ then the heat of formation of CO is: a) -110.0 kJc) -676.5 kJb) 676.5 kJ d) 110.5 kJ 46. Hess's law of constant heat summation is an application of: a) Kirchhoff's law b) First law of thermodynamics c) Second law of thermodynamics d) Entropy 47. The heat of reaction at constant pressure is equal to : a) $\Sigma U_P - \Sigma U_R$ b) $\Sigma U_R - \Sigma U_P$ c) $\Sigma H_P - \Sigma H_R$ d) $\Sigma H_R - \Sigma H_P$ 48. Select the correct limitations of III law of thermodynamics. a) Glassy solids at zero kelvin has entropy greater than zero

b) Solids having mixture of isotopes do not have entropy zero at zero kelvin c) Crystals of CO, N2O, NO, H2O, etc., do not have zero entropy at zero kelvin

	d) All of the above					
49.		Heat of formation of $H_2O(g)$ at 1 atm and 25°C is – 243 kJ. ΔU for the reaction,				
	$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(g)$) at 25°C is :				
	a) 241.8 kJ	b) -241.8 kJ	c) – 243 kJ	d) 243 kJ		
50.	Molar heat capacity of a ga	as at constant temperature	and pressure is:			
	a) $(3/2)R$					
	b) (5/2) <i>R</i>					
	c) Infinite					
	d) Depends upon atomicit	· -				
51.	If water is formed from H					
	a) –13.7 kcal	b) +13.7 kcal	c) -63.4 kcal	d) +63.4 kcal		
52.	The process of evaporatio	n of a liquid is accompanie	d by:			
	a) Increase in enthalpy					
	b) Decrease in Gibbs ener	gy				
	c) Increase in entropy					
	d) All of the above					
53.	The work done during the			-		
- 4	a) Zero	b) +ve	c) –ve	d) Either of these		
54.	The van't Hoff reaction iso) A.C. DTZ 1 II	J) N		
	-	b) $-\Delta G = RT \log_e K_p$	c) $\Delta G = RT - \ln K_p$	d) None of these		
55.	Which species have negat		-) 17	D. Catanata danaman		
F 6	a) Ice	b) Water	c) Vapour	d) Saturated vapour		
50.	The standard heat of form	auon of soutum tons in aqual 0 .) from NaOH(s) = -470 .		lowing data will be:		
		$(aq.)$ From $OH^{-}(s) = -22$				
	a) - 251.9 kJ	b) 241.9 kJ	c) – 241.9 kJ	d) 251.9 kJ		
57		Solume from $1 \times 10^3 \text{m}^3$ to 1		t a constant pressure of $1 \times$		
0,1	10^5 Nm ⁻² . The work done		7. To m acooo kagams	t a constant pressure of 1 ×		
	a) 270 kJ	b) -900 kJ	c) -900 I	d) 900 kJ		
58.	For the reaction $30_2 \rightarrow 2$, ,	, ,		
	a) O_3 is more stable than					
	b) O_3 is less stable than O_2	-				
	c) Both are equally stable					
	d) Formation of O ₃ is exot	hermic				
59.	One mole of a gas absorbs	200 J of heat at constant v	olume. Its temperature ris	ses from 298K To 308K. The		
	change in internal energy	is:				
	a) 200 J	b) -200 J	c) $200 \times \frac{308}{298}$ J	d) $200 \times \frac{298}{308}$ J		
60	,	•	298	308		
60.	Which of the following have	ve same units?				
	(i) work (ii) Heat					
	(iii) Energy (iv) Entropy a) (i), (ii) and (iii)	b) (i), (ii) and (iv)	c) (ii), (iii) and (iv)	d) (iii) and (iv)		
61				energy change at constant		
01.	temperature is given by:	iation between the entha	ipy change and internal	energy change at constant		
	a) $H = U + PV$	b) $\Delta H = \Delta U + \Delta nRT$	c) $\Delta II = \Delta H + P\Delta V$	d) $\Delta H = \Delta G + T \Delta S$		
62.	Vibrational energy is:	Syam as I amm		a, air ao 1140		
	a) Partially potential and	b) Only potential	c) Only kinetic	d) None of the above		
	partially kinetic	, ,	. ·	•		
63.	The relation $\Delta G = \Delta H - T$	'ΔS was given by				

64.	a) Boltzmann Calculate the free energy	_	c) Gibbs-Helmholtz	d) Thomson
	$2CuO(s) \to Cu_2O(s) + \frac{1}{2}O(s)$	$O_2(g)$		
	Given, $\Delta H = 145.6$ kJ per r			
	$\Delta S = 116$ J per mol per K			
	a) 113.8 kJ per mol	b) 221.5 kJ per mol	c) 55.4 kJ per mol	d) 145.6 kJ per mol
65.	The bond dissociation end	ergy of B-F in BF $_3$ is 646	kJ mol^{-1} , whereas that of	C-F in CF_4 is 515 kJ mol^{-1} .
	The correct reason for hig	gher B — F bond dissociation	n energy as compared to th	at of C—F is:
	a) Stronger σ bond between	en B and F in BF ₃ as compa	ared to that between C and	F in CF ₄
	b) Significant $p\pi - p\pi$ in interaction between C and interaction between C and interaction between C and interaction between π		F in BF ₃ whereas there	e is no possibility of such
		and F in Gr_4 $v\pi$ interaction between B a	nd F in RF, than that hetwo	een C and E in CE.
		as compared to that of C-at		cen canar m cr4
66	When water is added to q	-	COM	
00.	a) Explosive	b) Endothermic	c) Exothermic	d) None of these
67.	· •			mperature reservoir if there
-,-		en work done by engine is	,	rr
	a) 165.85 J	b) 169.95 J	c) 157.75 J	d) 147.7 J
68.	Least random state of wat		,	, ,
	a) Ice			
	b) Liquid water			
	c) Steam	141		
	d) All present in same ran	idom state		
69.	Given that standard hea	t enthalpy of CH_4 , C_2H_4 a	nd C ₃ H ₈ are — 17.9, 12.5, —	24.8 kcal/mol. The ΔH for
	$CH_4 + C_2H_4 \rightarrow C_3H_8$ is:	C FRIIC	ATTONI	
	a) $-55.2 \text{ kcal mol}^{-1}$		c) 55.2 kcal mol ⁻¹	d) $- 19.4 \text{ kcal mol}^{-1}$
70.		olid surface is generally exc	othermic because	
	a) Enthalpy is positive			
	b) Entropy decreases			
	c) Entropy increases			
71	d) Free energy increases	awa ana iaula and ana aala	wie ane in endem	
/1.	a) 1 erg > 1 > 1 cal	erg, one joule and one calo b) 1 erg > 1 cal > 1 J	c) 1 cal > 1 J > 1 erg	d) 1 J > 1 cal > 1 erg
72	, , ,	by is greater, then the ability		ujij/icai/ieig
/ 2.	a) Maximum	b) Minimum	c) Medium	d) None of these
73	For which change $\Delta H \neq A$	•	c) Medium	u) None of these
, 5.	a) $H_2 + I_2 \rightleftharpoons 2HI$	Δ0.		
	b) $HCl + NaOH \rightarrow NaCl +$	H ₂ O		
	c) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$	-		
	d) $N_2 + 3H_2 \rightarrow 2NH_3$,		
74.	Net work done by a system	m is given by:		
	a) Decrease in Helmholtz	-		
	b) Decrease in Gibbs ener	· · ·		
	c) Decrease in internal en	=: : :		
	d) Decrease in heat entha	lpy		
75	Ovidicing nower of chloris	no in aguague colution can	he determined by the para	motors indicated holowy

$$\frac{1}{2}\text{Cl}_2(g) \xrightarrow{\frac{1}{2}\Delta_{\text{diss}}\mathsf{H}^{\Theta}} \text{Cl}(g) \xrightarrow{\Delta_{\text{eg}}\mathsf{H}^{\Theta}} \text{Cl}^{-}(g) \xrightarrow{\Delta_{\text{hyd}}\mathsf{H}^{\Theta}} \text{Cl}^{-}(aq)$$

The energy involved in the conversion of

$$\frac{1}{2}$$
Cl₂ (g) to Cl⁻(aq)

(using the data, $\Delta_{\rm diss} H_{\rm Cl_2}^{\rm e} = 240~{\rm kJ~mol^{-1}}$, $\Delta_{\rm eg} H_{\rm Cl}^{\rm e} = -349~{\rm kJ~mol^{-1}}$, $\Delta_{\rm hyd} H_{\rm Cl^{-}}^{\rm e} = -381~{\rm kJ~mol^{-1}}$) will be :

- a) + 120 kJ mol⁻¹ b) + 152 kJ mol⁻¹

- c) -610 kJ mol^{-1} d) -850 kJ mol^{-1}
- 76. The law of Lavoisier and Laplace is based on:
 - a) The principle of conservation of energy
 - b) Equivalence of mechanical and thermal energies
 - c) The principle of conservation of matter
 - d) Equivalence of mechanical and chemical energies
- 77. ΔH for the reaction given below represents,

$$CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g); \Delta H = 40 \text{ kJ}:$$

- a) Heat of formation
- b) Heat of combustion
- c) Heat of neutralisation d) Heat of reaction
- 78. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is −1349 kcal, then his daily consumption of sugar is:
 - a) 728 g
- b) 0.728 g
- c) 342 g
- d) 0.342 g
- 79. The enthalpy of hydrogenation of cyclohexene is -119.5 kJ mol⁻¹. If resonance energy of benzene is -150.4 kJ mol⁻¹, its enthalpy of hydrogenation would be:
 - a) $-269.9 \text{ kJ mol}^{-1}$
- b) $-358.5 \text{ kJ mol}^{-1}$
- c) $-508.9 \text{ kJ mol}^{-1}$
- d) $-208.1 \text{ kJ mol}^{-1}$

80. The incorrect expression among the following is:

In isothermal process

In isothermal process a)
$$\frac{W_{\text{reversible}}}{W_{\text{reversible}}} = -nRT \ln \frac{V_f}{V_i}$$
 b) $\ln K = \frac{\Delta H^\circ - T\Delta S^\circ}{RT}$ c) $K = e^{-\Delta G^\circ/RT}$ d) $\frac{\Delta G_{\text{system}}}{\Delta S_{\text{total}}} = -T$

b)
$$\ln K = \frac{\Delta H^{\circ} - T\Delta S}{RT}$$

c)
$$K = e^{-\Delta G^{\circ}/RT}$$

$$\mathrm{d})\frac{\Delta G_{\mathrm{system}}}{\Delta S_{\mathrm{total}}} = -T$$

- 81. An ideal gas expands in volume from 1×10^{-3} m³ to 1×10^{-2} m³ at 300 K against a constant pressure of 1×10^5 Nm⁻². The work done is
 - a) -900 J
- b) -900 kI
- c) 270 kJ
- d) 900 kI

82. $C + O_2 \rightarrow CO_2$;

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

Then the heat of formation of CO is

- a) X Y
- b) Y 2X
- c) X + Y
- d) 2X Y
- 83. The formation water from $H_2(g)$ and $O_2(g)$ is an exothermic reaction because :
 - a) The chemical energy of $H_2(g)$ and $O_2(g)$ is more than that of water
 - b) The chemical energy of $H_2(g)$ and $O_2(g)$ is less than that of water
 - c) Not dependent on energy
 - d) The temperature of $H_2(g)$ and $O_2(g)$ is more than that of water
- 84. Which statements are correct?
 - a) 2.303 $\log \frac{P_2}{P_1} = \frac{\Delta H_{\text{vap.}}}{R} \frac{[T_2 T_1]}{T_1 T_2}$ is Clausius Clapeyron equation
 - b) $\frac{\Delta H_{\text{vap.}}}{\text{Boiling point}} = 88 \text{J mol}^{-1} \text{K}^{-1}$ is called Trouton's rule
 - c) Entropy is a measure of unavailable energy, i. e., unavailable energy = entropy \times temperature
 - d) All of the above
- 85. The work done in an open vessel at 300 K, when 112 g iron reacts with dil. HCl is:
 - a) 102 kcal
- b) 0.6 kcal
- c) 0.3 kcal
- d) 0.2 kcal
- 86. A solution of 500 mL of 2M KOH is added to 500 mL of 2M HCl and the mixture is well shaken. The rise in temperature T_1 is noted. The experiment is then repeated using 250 mL of each solution and rise in

temperature T_2 is again noted. Assume all heat is taken up by the solution:

- a) $T_1 = T_2$
- b) T_1 is 2 time as larger as T_2
- c) T_2 is twice larger as T_1
- d) T_1 is 4 time as larger as T_2
- 87. When 1 mole of gas is heated at constant volume. Temperature is raised from 298 to 308 K. Heat supplied to the gas is 500 J. Then which statement is correct?
 - a) $q = -W = 500 \text{ J}, \Delta U = 0$
 - b) $q = \Delta U = 500 \text{ J}, W = 0$
 - c) $q = W = 500 \text{ J}, \Delta U = 0$
 - d) $\Delta U = 0$, q = W = -500 J
- 88. The heat of formation is the change in enthalpy accompanying the formation of a substance from its elements at 298 K and 1 atm pressure. Since, the enthalpies of elements in their most stable state are taken to be zero, the heat of formation of compounds is:
 - a) Always negative
 - b) Always positive
 - c) Standard heat enthalpy of that compound
- 89. If enthalpies of methane and ethane are respectively 320 and 360 cal then the bond energy of C C bond is
 - a) 80 cal
- b) 40 cal
- c) 60 cal
- d) 120 cal
- 90. Which correctly represents the physical significance of Gibbs energy change?
 - a) $-\Delta G = W_{\text{compression}}$
 - b) $\Delta G = W_{\text{expansion}}$
 - c) $\Delta G = -W_{\text{expansion}} = W_{\text{non-expansion}}$
 - d) $-\Delta G = W_{\text{expansion}}$
- 91. Heat of neutralisation of which acid-base reaction is -57.32 kJ for?
 - a) $CH_3COOH + NaOH$ b) $HCl + NH_4OH$ c) HCOOH + KOH
- d) $HNO_3 + LiOH$
- 92. Entropy change of vaporisation at constant pressure is given by:
 - a) $\Delta S_{(v)} = \frac{\Delta H_v}{T}$
- b) $\Delta S_v = \frac{\Delta U_v}{T}$
- c) $\Delta S_{(v)} = \frac{\Delta H_v}{\Delta T}$
- d) None of these

93. Given, $C + O_2 \rightarrow CO_2 + 94.2 \text{ kcal } \dots \text{(i)}$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O + 68.3 \text{ kcal} \quad (ii)$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 210.8 \text{ kcal } \dots. \text{ (iii)}$$

The heat of formation in kcal will be:

- a) 45.9
- b) 47.8
- c) -20.0
- d) 47.3
- 94. The enthalpy of formation of HI is 30.4 kJ. Which statement is false according to this observation?
 - a) HI is an endothermic compound
 - b) For the reaction, $H_2(g) + I_2(g) \rightarrow 2HI(g)$; $\Delta H = 60.8 \text{ kJ}$
 - c) HI is a stable compound
 - d) HI is an unstable compound
- 95. Mark the correct statement
 - a) For a chemical reaction to be feasible, ΔG should be zero
 - b) Entropy is a measure of order in a system
 - c) For a chemical reaction to be feasible, ΔG should be positive

06	d) The total energy of an isolated system is cons		[V-1mal-1 Civan that hast of
90.	The entropy change for vaporisation of liquid v	water to steam at 100°C is,	K -moi -, Given that heat of
	vaporisation is 40.8 kJ mol^{-1} . a) 109.38 b) 100.38	c) 110.38	d) 120.38
97	Given the bond energies of $N \equiv N, H-H$ and N	•	
<i>)</i> / .	enthalpy of the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH$		37 Kj mor Tespectively, the
	a) -93 kJ b) 102 kJ	c) 90 kJ	d) 105 kJ
98	When ammonium chloride is dissolved in water		
<i>7</i> 0.	a) Endothermic b) Exothermic	c) Super cooling	d) None of these
99.	The Gibbs energy change and standard Gibbs en		
	a) Zero b) 1	c) > 1	d) < 1
100	The bond energy of H_2 is 104.3 kcal mol ⁻¹ . It me		,
	a) 104.3 kcal heat is required to break up <i>N</i> bor		
	b) 104.3 kcal heat is required to break up <i>N</i> mol		
	c) 104.3 kcal heat is evolved during combination		molecules of H ₂
	Heat of formation of H atom		-
	d = $\frac{1}{2}$ × bond energy of H—H		
101	For the process, $CO_2(s) \rightarrow CO_2(g)$:		
101	a) Both ΔH and ΔS are +ve		
	b) ΔH is $-\text{ve}$ and ΔS is $+\text{ve}$		
	c) ΔH is +ve and ΔS is -ve		
	d) Both ΔH and ΔS are $-ve$		
102	The process, in which no heat enters or leaves the	he system is termed as	
	1 741	c) Isothermal	d) Adiabatic
103	The work done during the expansion of a ga		
	external pressure of 3 atm is	1	S
	a) -6 J b) -608 J	c) +304 I	d) -304 J
104	Which are correct to express work terms?	DOMITOR	<i>y</i> ,
	Work = Capacity factor \times Intensity factor; where	nere capacity factor is a meas	ure of extent of work done
	and intensity factor is a measure of force resp		
	b) Electrical work = $E \times nF$; E is intensity factor		
	c) Expansion work = $P \times \Delta V$; P is intensity factor		
	d) All of the above		
105	Theenthalpy change for the transition of liquid v	water to steam is $\Delta H_{\rm vap} = 37$.3 kJ mol ^{–1} at 373 K. The
	entropy change for the process is	•	
	a) $132.5 \text{ J mol}^{-1}\text{K}^{-1}$ b) $100 \text{ J mol}^{-1}\text{K}^{-1}$	c) 135.3 J mol ⁻¹ K ⁻¹	d) 75.5 J mol ⁻¹ K ⁻¹
106	Which is not a spontaneous process?		
	a) Expansion of a gas into vacuum		
	b) Water flowing down hill		
	c) Heat flowing from colder body to a hotter body	dy	
	d) Evaporation of water from clothes during dry	_	
107	In a chemical reaction $\Delta H = 150$ kJ and $\Delta S = 10$	00 JK $^{-1}$ at 300 K. The ΔG for t	he reaction is:
	a) Zero b) 300 kJ	c) 330 kJ	d) 120 kJ
108	Enthalpy of $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$ is negative.	If enthalpy of combustion o	f CH ₄ and CH ₃ OH are x and y
	respectively. Then which relation is correct?		
	a) $x > y$ b) $x < y$	c) $x = y$	d) $x \ge y$
109	The enthalpy and entropy change for the reaction	on,	
	$Br_2(l) + Cl_2(g) \rightarrow 2BrCl(g)$		

		105 JK ⁻¹ mol ⁻¹ respecti	vely. The temperature	at which the reaction will be in
	equilibrium is:	1) 200 1/) 205 5 K	D 272 K
110	a) 450 K	b) 300 K	c) 285.7 K	d) 273 K
110.	-	or causes cooling on expa	nsion because:	
		as is converted into heat		
		st as work is done by the	gas	
	c) The heat is spread of	over a large space		
	d) None of the above	1		
111.	ΔS is positive for the c	=) M 1.1 C 1:1	12 A11 C11
110		b) Boiling of liquid	•	
112				$_2$ (g). At equilibrium when the flask
		-	and on cooling it becor	mes coloured. Which statement is
	incorrect about this ol			
		tion $N_2O_4(g) \rightleftharpoons 2NO_2(g)$	is +ve	
	b) Paramagnetism inc	=		
	c) The $\Delta H - \Delta U$ at 100	-		
440	d) Dimerisation is red	•	1 1	
113.	•	•		nt and next keeping the pressure
		d experiment, there was a	an increase in volume. H	ne heats of reaction were different,
	because:		11 1	
	=	energy was spent to keep		
	•	energy was spent to expar	id the gases	
	· -	mpressed gases is more		
111	d) Specific heats of ran	- Plant	2001/	d
114				d occupying a volume of 5 dm ³
	•	volume become 25dm ³ is		1) + 2.01 × 10=6.1
115	a) 2.01×10^3 J			d) $+2.01 \times 10^{-6}$ J
115				ne heat released when 0.5 mole of
		d to 0.20 mole of NaOH so		4) E0 0 l-1
116	a) 11.4 kJ	b) 34.7 kJ	c) 23.5 kJ	d) 58.8 kJ
110		ollowing equations is ΔH_{r}	$_{ m eaction}$ equal to ΔH_f for the	ne product?
	a) $N_2(g) + O_3(g) \rightarrow N$			
		$\rightarrow CH_2Cl_2(l) + 2HCl(g)$		
	c) $Xe(g) + 2F_2(g) \rightarrow$			
	d) $2CO(g) + O_2(g) \rightarrow$	- 107		
117.		-		or more steps, then the amount of
		ved during the complete o	course of reaction is same	e, whichever method was followed
	This law is known as:	. 1		
	a) Le-Chatelier's princ	apie		
	b) Hess's law			
	c) Joule-Thomson effe	ct		
440	d) Trouton's law	1.1	. 111 .	
118		adiabatic expansion, it g		
	a) Loss of kinetic ener		b) Fall in temperat	
110	c) Decrease in velocity		d) Energy used in	
119			aluminium reacts with a	stoichiometric amount of Fe ₂ O ₃ ?
		$- \text{Al}_2 \text{O}_3; \ \Delta H^o = -852 \text{ kJ}$	a) 40 C l I	J) 1 42 C l-1
100	a) 852 kJ	b) 426 kJ	c) –42.6 kJ	d) +42.6 kJ
120	. Which reaction is end	omermic in nature?		

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

a) $CaCO_3 \rightarrow CaO + CO_2$		
b) $C + O_2 \rightarrow CO_2$		
c) NaOH + HCl \rightarrow NaCl + H ₂ O		
d) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$		2
121. The enthalpy and entropy change for a chemi	ical reaction are $-2.5 \times 10^{\circ}$	scal and 7.4 cal K ⁻¹ respectively.
Predict that nature of reaction at 298 K is:		
a) Spontaneous b) Reversible	c) Irreversible	d) Non-spontaneous
122. If 50 calorie are added to a system and system	m does work of 30 caloric	e on surroundings, the change in
internal energy of system is:	2 40 1	D 00 1
a) 20 cal b) 50 cal	c) 40 cal	d) 30 cal
123. If a refrigerator's door is opened then, we get	120	
a) Room heated	b) Room cooled	
c) More amount of heat is passed out	d) No effect on roon	
124. When a bottle of perfume is opened, odourou		nd slowly diffuse throughout the
entire room. The incorrect fact about the proce		D A G
a) $\Delta G = -\text{ve}$ b) $\Delta H \simeq 0$	c) $\Delta S = -ve$	d) $\Delta S = +ve$
125. Equilibrium constant of a reaction is related to	:	
a) Standard Gibbs energy change ΔG°		
b) Gibbs energy change ΔG		
c) Heat enthalpy		
d) None of the above		
126. 48 g of C (diamond) on complete combustion e		standard heat of formation of
gaseous carbon is 725 kJ/mol. The energies red	quired for the process	
(i) C (graphite) $\rightarrow C$ (gas)		
(ii)C (diamond) \rightarrow C(gas)are:	a) 725 722	d) None of these
a) 725, 727 b) 717, 725	c) 725, 723	d) None of these
127. An example of closed system is:a) Hot water present in an open beaker	LICATION	
b) Some amount of water present in equilibriu	m with its vanour in a close	nd and insulated beaker
c) Some amount of water present in equilibriums of hot water enclosed in a closed in a clo		
d) None of the above	sed container which is not	lisulateu
128. At 1 atm pressure, $\Delta S = 75 \text{ JK}^{-1} \text{mol}^{-1}$; $\Delta H =$	20 kI mol ⁻¹ The temperate	ure of the reaction at equilibrium
is:	30 kj mor . The temperat	are of the reaction at equilibrium
a) 400 K b) 330 K	c) 200 K	d) 110 K
129. 2.1 g of Fe combines with S evolving 3.77 kJ. Th	•	-
a) -1.79 b) -100.5	c) -3.77	d) None of these
130. In an isochoric process, the increase in interna		u) None of these
a) Equal to the heat absorbed	renergy is	
b) Equal to the heat evolved		
c) Equal to the work done		
d) Equal to the sum of the heat adsorbed and w	vork done	
131. The sublimation energy of $I_2(s)$ is 57.3 kJ/s		usion is 15.5 kL/mol. The
enthalpy of vaporisation of I_2 is	morana the enthalpy of t	usion is 15.5 kJ/ mon The
	a) 72 0 kJ/mal	d) 72.0 kJ/mol
a) 41.8 kJ/mol b) -41.8 kJ/mol	c) 72.8 kJ/mol	••
132. ΔG° for the reaction $X + Y \rightleftharpoons Z$ is -4.606 kcal.	i ne value of equilibrium co	nstant of the reaction at $22/\%$ is
$(R = 2.0 \text{ cal mol}^{-1} \text{K}^{-1})$	a) 2	4) 0 01
a) 100 b) 10	c) 2	d) 0.01
133. The entropy values (in $JK^{-1} \text{ mol}^{-1}$) of $H_2(g) = 298 \text{ K}$ and 1 atm pressure, the entropy change		

- a) +540.3
- b) +727.3
- c) -166.9
- d) + 19.8

134. Bond energy of molecule:

- a) Is always negative
- b) Is always positive
- c) Either positive or negative
- d) Depends upon the physical state of the system

135. In which case of mixing of a strong acid and a base each of 1N concentration, temperature increase is highest?

- a) 20 mL acid 20mL alkali
- b) 10 mL acid 40mL alkali
- c) 25 mL acid 25mL alkali
- d) 35 mL acid 15mL alkali

136. ΔS^o will be highest for the reaction

a)
$$Ca(s) + \frac{1}{2}O_2(g) \to CaO(s)$$

b)
$$CaCO_3(g) \rightarrow CaO(s) + CO_2(g)$$

c) $C(g) + O_2(g) \rightarrow CO_2(g)$

d)
$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

137. Bond dissociation enthalpy of H_2 , Cl_2 and HCl are 434, 242 and 431 kJ mol^{-1} respectively. Enthalpy of formation of HCl is :

- a) -245 kJ mol^{-1}
- b) -93 kI mol^{-1}
- c) 245 kJ mol⁻¹
- d) 93 kJ mol^{-1}

138. Joule-Thomson expansion is

- a) Isobaric
- b) Isoenthalpic
- c) Isothermal
- d) None of these

139. The energy absorbed by each molecule (A_2) of a substance is 4.4×10^{-19} J and bond energy per molecule is 4.0×10^{-19} J. The kinetic energy of the molecule per atom will be:

- a) 4.0×10^{-20} J
- b) 2.0×10^{-20} J
- c) 2.2×10^{-19} J
- d) 2.0×10^{-19} J

140. Which one of the following is not a state function?

- a) Enthalpy
- b) Entropy
- c) Work
- d) Free energy

141. Temperature and heat are:

- a) Extensive properties
- b) Intensive properties
- c) Intensive and extensive properties respectively
- d) Extensive and intensive properties respectively

142. A schematic plot of In K_{eq} versus inverse of temperature for a reaction is shown below

The reaction must be

a) Exothermic

- b) Endothermic
- c) One with negligible enthalpy change
- d) Highly spontaneous at ordinary temperature

143. For a reaction at 25°C, enthalpy and entropy changes are -11.7×10^3 J mol⁻¹ and -105 J mol⁻¹ K⁻¹ respectively. What is the Gibbs free energy?

- a) 15.05 kJ
- b) 19.59 kJ
- c) 2.55 kJ
- d) 22.55 kJ

144. Which of the following equations correctly represents the standard heat of formation (ΔH_f^o) of methane?

a) $C(diamond) + 2H_2(g) \rightarrow CH_4(g)$

b) $C(graphite) + 2H_2(g) \rightarrow CH_4(l)$

c) $C(graphite) + 2H(g) \rightarrow CH_4(g)$

d) $C(graphite) + 4H \rightarrow CH_4(g)$

145. Combustion of glucose takes place according to the e	-	
$C_6H_{12}O_6 + CO_2 \rightarrow 6CO_2 + 6H_2O; \Delta H = -72$ kcal. Hov	w much energy will be requ	iired for the production of
1.6 g of glucose (Molecular mass of glucose = 180)?		
a) 0.064 kcal b) 0.64 kcal	c) 6.4 kcal	d) 64 kcal
146. In an irreversible process taking place at constant \mathcal{T}	7 7	essure volume work is
being done, the change in Gibbs free energy (dG) and	d change in entropy	
a) $(dS)_{V,E} < 0(dG)_{T,P} < 0$	b) $(dS)_{V,E} > 0(dG)_{T,P} < 0$	0
c) $(dS)_{V,E} > 0(dG)_{T,P} = 0$	d) $(dS)_{V,E} = 0(dG)_{T,P} > 0$	0
147. Hess's law states that		
a) The standard enthalpy of an overall reaction	is the sum of the entha	lpy changes in individual
reactions.		
b) Enthalpy of formation of a compound is same	as the enthalpy of decon	nposition of the
compound into constituent elements, but with	- -	
c) At constant temperature the pressure of a gas		ıl to its volume
d) The mass of a gas dissolved per litre of a solve		
	ent is proportional to the	pressure of the gas in
equilibrium with the solution.		
148. Internal energy is sum of		
a) Kinetic energy and potential energy	b) All types of energy of	the system
c) Energy of internal system	d) None of the above	
149. Heat given to a system under isochoric process is equal to the system of the syst	ual to:	
a) W b) q_p	c) Δ <i>U</i>	d) Δ <i>H</i>
150. All the naturally occurring processes, <i>i. e.</i> , spontane	ous proceed spontaneously	y in a direction which leads
to:		
a) Decrease of free energy		
b) Increase of free energy		
c) Decrease of entropy	ATION	
d) Increase of enthalpy	MITON	
151. Which phenomena cannot be described as oxidation	?	
a) Oxidation of coal in air		
b) Burning of magnesium in nitrogen		
c) Reaction of antimony with chlorine		
d) Lighting of an electric lamp		
152. Heat of formation of H_2O is -188 kJ/mol and H_2O_2 is	s –286 kJ/mol. The enthalp	by change for the reaction
$2H_2O_2 \to 2H_2O + O_2$ is		
a) 196 kJ b) -196 kJ	c) 984 kJ	d) –984 kJ
153. When 1g atom of carbon is converted into 1g molecu		
a) Irrespective of whether the volume is kept consta		tant
b) Irrespective of the temperature at which the react		
c) Whether the carbon is in the form of diamond or g	graphite	
d) None of the above		
154. For the gas phase reaction,		
$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$		
Which of the following conditions are correct?	2.44401460	DAM 0 140 0
	c) $\Delta H > 0$ and $\Delta S < 0$	•
155. A system provided 50 joule of heat and work done	on the system is 10 J. The	e cnange in internal energy
during the process is:	a) 00 I	J)
a) 40 J b) 60 J 156 The correct relationship between free energy change	c) 80 J	d) 50 J

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 13

constant K_c is	$h) AC = DT \ln V$	a) $\Lambda C^{\circ} = DT \operatorname{Im} V$	d) $AC0 = DT \ln V$		
-	-	c) $\Delta G^{\circ} = RT \operatorname{In} K_c$	$u_j - \Delta G = RT \operatorname{III} K_c$ u_{system}) at constant temperature		
	atement for change of Gibt	os ellergy for a system (Δω _s	system) at constant temperature		
and pressure:	arratam ia atill marring in a	nautianlau dinautian			
	system is still moving in a				
	the process is not spontane				
	the process is spontaneous				
	system has attained equili				
158. The standard heat of o		is:			
a) $\Delta_f H^{\circ}(B_2O_3)$	b) $\frac{1}{2}\Delta_f\Delta H^{\circ}(B_2O_3)$	c) $-\Delta_f H^0$ (B ₂ O ₃)	$d) - \frac{1}{2} \Delta_f \Delta H^{\circ}(B_2 O_3)$		
159. During an isothermal	expansion of an ideal gas it	īs:	-		
a) Enthalpy decreases	;				
b) Internal energy dec	creases				
c) Internal energy inc	reases				
d) Internal energy ren	nains constant				
160. The exchange of heat	energy during chemical	reaction at constant tempe	rature and pressure occurs in		
form of:					
a) Free energy	b) Internal energy	, ,,	d) Bond energy		
			$C \equiv C$ bond in C_2H_2 . Given that		
		ake the bond energy of C—H	bond as 350 kJ mol^{-1} .):		
$2C(s) \rightarrow 2C(g)$	$\Delta H = 1410 \text{ kJ mol}^{-1}$				
$2C(s) \rightarrow 2C(g)$	$\Delta H = 1410 \text{ kJ mol}^{-1}$				
$H_2(g) \rightarrow 2H(g)$	$\Delta H = 330 \text{ kJ mol}^{-1}$				
a) 1165	b) 837	c) 865	d) 815		
162. The molar heat capacity of water at constant pressure is 75 $\rm JK^{-1}~mol^{-1}$. When 1.0 kJ of heat is supplied to					
-		se in temperature of water			
a) 2.4 K	b) 3.6 K	c) 4.8 K	d) 1.2 K		
163. For which of the proce	ess, ΔS is negative?	1) 200 () 200 ()			
a) $H_2(g) \rightarrow 2H(g)$	(0)	b) $2SO_3(g) \to 2SO_2(g)$			
c) $N_2(1 \text{ g atom}) \rightarrow N_2$. •	d) $C_{\text{(diamond)}} \rightarrow C_{\text{(grap)}}$			
		kJ. The bond energy $C - H$			
a) -416 kJ/mol	b) -41.6 kJ/mol	c) 832 kJ/mol	d) None of these		
•	, the ratio of heat supplied	to the system $(a\theta)$ and wor	k done by the system (dW) for		
diatomic gas is	L) 7.2	-) 7.F	4) F.7		
a) 1:1	b) 7:2	c) 7:5	d) 5:7		
166. An adiabatic process	s occurs in	1.) (1)			
a) Open system		b) Closed system			
c) Isolated system		d) In all the given sys	stem		
167. The heat of formation					
	ve higher temperature tha				
	ve lower temperature than				
	ve higher internal energy t	nan water			
d) None of the above					
168. In an adiabatic proce) A II	12 0		
a) $p \Delta V = 0$	b) $q = +W$	c) $\Delta E = q$	d) q = 0		
169. A well stoppered ther	-	-	d) Manage 6.11		
a i Ciosed system	DI Open system	c) Isolated system	d) None of these		

170. Internal energy is		
a) Partly potential and partly kinetic	b) Totally kinetic	
c) Totally potential	d) None of the above	
171. The enthalpy of formation of ammonia gas at 298	K is -46.11 kJ mol ⁻¹ . The	equation to which this value
relates is:		
a) $\frac{1}{2}$ N ₂ (g) + $\frac{3}{2}$ H ₂ (g) \rightarrow NH ₃ (g)		
b) $N(g) + 3H(g) \rightarrow NH_3(g)$		
c) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$		
$d) \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \longrightarrow NH_3(l)$		
172. $C_{diamond} + O_2 \rightarrow CO_2$; $\Delta H = -395.3 \text{ kJ/mol}$		
$C_{\text{graphite}} + O_2 \rightarrow CO_2$; $\Delta H = -393.4 \text{ kJ/mol}$		
$C_{\text{graphite}} \rightarrow C_{\text{diamond}}; \Delta H = ?$		
a) -3.8 b) -1.9	c) +3.8	d) +1.9
173. The heat evolved in the combustion of methane is		•
$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + H_2O(l); \Delta H = -890$		
How many grams of methane would be required to		f combustion?
a) 4 g b) 8 g	c) 12 g	d) 16 g
174. The calorific value of fat is :	-7 8	, 8
a) Lesser than that of carbohydrate and protein		
b) Lesser than that of protein but more than carbo	hvdrates	
c) Lesser than that of carbohydrate but more than		
d) More than that of carbohydrate and protein		
175. The standard heat of formation of NO ₂ (g) and N ₂ C	$0_{4}(g)$ are 8.0 and 2.0 kcal m	ol^{-1} respectively. The heat of
dimerization of NO ₂ in kcal is:	4(8)	r
	c) -12.0	d) -14.0
176. Given that.	c) -12.0	,
$3C(s) + 2Fe_2O_3(s) \rightarrow 4Fe(s) + 3CO_2(g)\Delta H^o = -9$	3657 cal	
$C(s) + O_2(g) \rightarrow CO_2(g); \Delta H^o = -94050 \text{ cal}$		
If both the values of ΔH are at 25°C then calculate ΔH	$M_{\rm Fe_2O_2}^0$	
a) 16.750 kcal b) – 16.750 kcal		d) –393 kcal
177. 16 g oxygen gas expands at STP to occupy double of	•	•
is:	O	
a) 260 kcal b) 180 kcal	c) 130 kcal	d) 272.8 kcal
178. One mole of an ideal gas at 300K is expanded isotl		-
ΔU for this process is $(R = 2 \text{ cal } \text{K}^{-1} \text{mol}^{-1})$:	v	
a) 163.7 cal b) 1381.1 cal	c) 1.0 J mol ⁻¹ K ⁻¹	d) $0.1 \text{ J mol}^{-1}\text{K}^{-1}$
179. Gibbs energy G , enthalpy H and entropy S are related		,
=	c) $G - TS = H$	d) S = H - G
180. In a closed insulated container a liquid is stirred v	•	
following is true?	1	,
a) $\Delta U + W \neq 0, q = 0$ b) $\Delta U = W = q \neq 0$	c) $\Delta U = 0$, $W = a \neq 0$	d) $W = 0$, $\Delta U = a \neq 0$
181. The ionization energy of solid NaCl is 180 kcal per		
ions is endothermic to the extent of 1 kcal per mo		
ratio 6:5, what is the enthalpy of hydration of sodiu	_	
a) – 85.6 kcal/mol b) – 97.5 kcal/mol	c) 82.6 kcal/mol	d) + 100 kcal/mol
182. Enthalpy of solution of NaOH (solid) in water is –4		•
temperature of water	, , , , , , , , , , , , , , , , , , , ,	,

GPLUS EDUCATION

				Gplus Edu
a) In	icreases		b) Decreases	
c) D	oes not change		d) Fluctuates indefinitely	
183. Mar	k out the enthalpl	ny of formation of carbo	on monoxide (CO)	
Give	en, $C(s) + O_2(g) -$	$\rightarrow CO(g), \Delta H = -393.3 \text{ k}$	xJ/mol	
CO($g) + \frac{1}{2}O_2(g) \to CC$	$O_2(g), \Delta H = -282.8 \text{ kJ/}$	mol	
a) 1:	10.5 kJ/mol	b) 676 . 1 kJ/mol	c) 282.8 kJ/mol	d) 300.0 kJ/mol
184. Heat	of neutralization o	f a strong acid and a stror	ng base is equal to ΔH of :	
a) H	$^{+} + OH^{-} = H_{2}O$			
b) H	$_{2}0 + H^{+} = H_{3}0^{+}$			
c) 21	$H_2 + O_2 = 2H_2O$			

- d) $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$
- 185. The temperature of the system increases during an:
 - a) Isothermal expansion
 - b) Adiabatic compression
 - c) Adiabatic expansion
 - d) Isothermal compression
- 186. For an adiabatic expansion of a perfect gas $\Delta P/P$ is equal to:

b)
$$\gamma \frac{\Delta V}{V}$$

c)
$$-\gamma \frac{\Delta V}{V}$$

d)
$$-\gamma^2 \frac{\Delta V}{V}$$

- 187. The heat evolved during neutralisation is maximum in the reaction of:
 - a) NH₄OH and CH₃COOH
 - b) NH₄OH and HCl
 - c) NaOH and CH₃COOH
 - d) NaOH and HCl
- 188. In which reaction ΔS is positive?

a)
$$H_2O(l) \rightarrow H_2O(s)$$

b)
$$30_2(g) \rightarrow 20_3(g)$$

c)
$$H_2O(l) \rightarrow H_2O(g)$$

d)
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

189. It is impossible to attain the lowest temperature known as zero degree absolute. This is a simple statement of:

JPLUS EDUCATION

- a) First law of thermodynamics
- b) Second law of thermodynamics
- c) Third law of thermodynamics
- d) None of the above
- 190. The total entropy change for a system and its surroundings increases, if the process is:
 - a) Reversible
- b) Irreversible
- c) Exothermic
- d) Endothermic

- 191. Heat of formation of compound is defined as:
 - a) Heat evolved to form one mole of the compound from its elements
 - b) Heat required to form one molecule of a compound
 - c) Change in heat content of the system when one molecule of a compound is formed
 - d) None of the above
- 192. At absolute zero, the entropy of a perfect crystal is zero. This is ... of thermodynamics.
 - a) First law
- b) Second law
- c) Third law
- d) None of these
- 193. Standard state Gibbs free energy changes for the isomerization reaction,

cis-2-pentene $\rightleftharpoons trans$ -2-pentene is -3.67 kJ/mol at 400K. If more trans-2-pentene is added to the reaction vessel, then:

a) Equilibrium remains unaffected

	b) Additional trans-2-per			
	c) More <i>cis</i> -2-pentene is f			
	d) Equilibrium is shifted i			
194			K^{-1} mol ⁻¹ respectively. Th	ne total change in standard
	entropy for the reaction, I			
	a) 30 JK ⁻¹ mol ⁻¹		c) 60 JK ⁻¹ mol ⁻¹	d) 20 JK ⁻¹ mol ⁻¹
195		change for a reversible isot	thermal cycles is	
	a) Always 100 calories pe	r degree	b) Always negative	
	c) Zero		d) Always positive	
196	One mole of a gas occup	ying 3dm³ expands agains	st constant external pressi	are of 1 atm to a volume of
	13 dm ³ . The work done is			
	a) -10 atm dm ³	b) -20 atm dm ³	c) -39 atm dm ³	d) –48 atm dm³
197	. The heat of combustion of	f methane is — 880 kJ mol [–]	1 . If 3.2 g of methan is burn	nt:
	a) -176 kJ of heat is evol	ved		
	b) 176 kJ of heat is absorb	oed		
	c) 88 kJ of heat is evolved			
	d) None of above			
198	Heat of solution is defined	l as :		
	a) Heat required to dissol	ved one mole in excess of v	water	
		e mole is dissolved in exces		
	c) Change in heat content	of the system when one m	ole of the solute is dissolve	ed un excess of water, so
	that further dilution of	solution does not bring an	y heat change	
	d) None of the above	S. Ju. 3		
199	. A mixture of two moles of	carbon monoxide and one	mole of oxygen, in a closed	d vessel is ignited to convert
	the carbon monoxide to ca	arbon dioxide. If ΔH is the	enthalpy change and ΔE is	the change in internal
	energy, then			-
	a) $\Delta H > \Delta E$	FRUIA	ATTONI	
	b) $\Delta H < \Delta E$	PLUS EDUC	.AHON	
	c) $\Delta H = \Delta E$			
	d) The relationship depen	ds on the capacity of the v	essel	
200	. Molar heat capacity is give	= *		
		•	2 70 1	d) None of these
	a) $\frac{dQ}{dT}$	b) $dQ \times dT$	c) $\Sigma Q \frac{1}{dT}$	-
201	. Two mole of an ideal gas i	s expanded isothermally a	nd reversibly from 1 L to 1	0 L at 300 K. The enthalpy
	change (in kJ) for the prod	cess is		
	a) 11.4	b) -11.4	c) 0	d) 4.8
202	. A gaseous system change:	s from state $A(P_1, V_1, T_1)$ to	$B(P_2, V_2, T_2), B \text{ to } C(P_3, V_3)$	T_3 , T_3) and finally from C to A .
	The whole process may be	e called:		
	a) Reversible process	b) Cyclic process	c) Isobaric process	d) Spontaneous process
203	One mole of ice is conve	erted into water at 273 K.	The entropies of $H_2O(s)$	and $H_2O(l)$ are 38.20 and
	60.01 J mol ⁻¹ K ⁻¹ respect	ively. The enthalpy change	for the conversion is:	
	a) 59.54 J mol ⁻¹	b) 5954 J mol ⁻¹	c) 595.4 J mol ⁻¹	d) 320.6 J mol ⁻¹
204	For a diatomic molecule	AB , the electronegativity α	difference between A and	$B = 0.2028\sqrt{\Delta}$. [Where Δ =
				ectronegativities of fluorine
				: 38 kcal mol ^{-1} and Cl $-$ Cl :
	58 kcal mol^{-1} . The bond ϵ		J	
	a) ~ 71 kcal/mol	b) ~ 61 kcal/mol	c) ~ 48 kcal/mol	d) ~ 75 kcal/mol
205	•	•	l, the system is back to its s	-
	a) Boyle's cycle	b) Reversible process	c) Adiabatic process	d) Cyclic process
		- <u>*</u>		

206. The heat of neutralisation of a strong acid and a stro	nσ alkali is 57 0 kl mol ^{–1} T	he heat released when 0.5			
mole of HNO_3 solution is mixed with 0.2 mole of KOH is					
a) 57.0 kJ b) 11.4 kJ	c) 28.5 kJ	d) 34.9 kJ			
207. The Kirchhoff's equation gives the effect ofon hea	•	, ,			
a) Pressure b) Temperature	c) Volume	d) Molecularity			
208. Δn values in $\Delta H = \Delta U + \Delta nRT$ may have:		,			
a) Integer nature b) Fractional value	c) Positive or negative	d) All of these			
209. AB , A_2 and B_2 are diatomic molecules. If the bond e	nthalpies of A_2 , AB and B_2	are in the ratio 1:1:0.5 and			
the enthalpy of formation of AB from A_2 and B_2 is $-$	$100 \; \text{kJ mol}^{-1}$, what is the b	ond enthalpy of A_2 ?			
a) 400 kJ mol^{-1} b) 200 kJ mol^{-1}	c) 100 kJ mol ⁻¹	d) 300 kJ mol ⁻¹			
210. Which of the following is an intensive property?					
a) Temperature b) Viscosity	c) Surface tension	d) All of these			
211. The temperature of the system decreases in an					
a) Adiabatic compression	b) Isothermal compression	n			
c) Isothermal expansion	d) Adiabatic expansion				
212. If a refrigerator door is kept open, then we get:					
a) Room cooled					
b) Room heated					
c) More heat is passed out					
d) No effect on room					
213. The enthalpy of vaporization of a liquid is 30 kJ n	10^{-1} and entropy of vapo	prization is 75 J mol^{-1} . The			
boiling point of liquid at 1 atm is :	Section 1				
a) 250 K b) 400 K	c) 450 K	d) 600 K			
214. Which is correct about the heat of combustion?					
a) The combustion be exothermic in some cases and	endothermic in other case	S			
b) Heat of combustion is always exothermic					
c) Its value change with temperatured) All of the above	'ΔΤΙΟΝ				
	PATTOTA				
215. In an isothermal process) O 145 O	р . о . 14П . о			
a) $q = 0$ and $\Delta E = 0$ b) $q \neq 0$ and $\Delta E = 0$	• •	• •			
216. The enthalpy of combustion of H_2 , cyclohexane (C_6H		₂) are –241, –3800 and			
-3920 kJ per mol respectively. Heat of hydrogenation		D 04017/			
a) 121 kJ/mol b) -121 kJ/mol	c) +242 kJ/mol	d) –242 kJ/mol			
217. For the isothermal expansion of an ideal gas	1) Г				
a) E and H increases	b) E increases but H decr	eases			
c) <i>H</i> increases but <i>E</i> decreases	d) E and H are unaltered	[and C]—C] are 420 and 242			
218. Heat evolved in the reaction, $H_2 + Cl_2 \rightarrow 2HCl$ is 18	z kj. Bond energies of H ⁻ H	and CI-Ci are 430 and 242			
kJ/mol respectively. The H—Cl bond energy is : a) 245 kJ mol ⁻¹ b) 427 kJ mol ⁻¹	c) 336 kJ mol ⁻¹	d) 154 kJ mol ⁻¹			
219. Which is not correct?	C) 550 K) IIIOI	u) 154 KJ 11101			
a) In an exothermic reaction, the enthalpy of produc	ts is less than that of reacta	inte			
b) $\Delta H_{\text{fusion}} = \Delta H_{\text{sublimation}} - \Delta H_{\text{vaporisation}}$	ts is iess than that of reacte	uits			
c) A reaction for which ΔH° < 0 and ΔS° > 0 is poss	ible at all temperatures				
ΔH is less than ΔU for the reaction,	ible at all temperatures				
d) $\frac{d}{C(s)} + (1/2)O_2$ (g) $\rightarrow CO_2$ (g)					
220. A cylinder of gas is assumed to contain 11.2 kg of bu	tane (C.H.o) If a normal fa	mily needs 20000 kL of			
energy per day. The cylinder will last (Given that ΔH		_			
a) 20 days b) 25 days	c) 26 days	d) 24 days			
221. The enthalpy of formation of water from hydrog		, ,			

decomposition of water into hydrogen and oxygen is:

- a) -286 kJ mol^{-1}
- b) 143 kJ mol^{-1}
- c) + 286 kJ mol^{-1}
- d) $+143 \text{ kJ mol}^{-1}$
- 222. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_i is the initial temperature and T_f is the final temperature, which of the following statements is correct?
 - a) $(T_f)_{\text{irrev}} > (T_f)_{\text{rev}}$
 - b) $T_f > T_i$ for reversible process but $T_f = T_i$ for irreversible process
 - c) $(T_f)_{\text{rev}} = (T_f)_{\text{irrev}}$
 - d) $T_f = T_i$ for both reversible and irreversible processes
- 223. Heat of fusion of a molecular solid is:
 - a) Very high
- b) High

c) Low

d) None of these

224. Which plot represents for an exothermic reaction?

- 225. For a spontaneous chemical change the Gibbs energy change is:
 - a) Positive
 - b) Negative
 - c) Zero
 - d) Depends whether the reaction is exothermic or endothermic
- 226. An ideal gas undergoing expansion in vacuum shows:
 - a) $\Delta U = 0$
- b) W = 0
- c) q = 0
- d) All of these

- 227. Select the incorrect statement
 - a) PV work is usually negligible for solid and liquid
 - b) For a closed system with P-V work only, an isobaric process that has q=+ ve must have $\Delta T=+$ ve.
 - c) For a cyclic process q = 0
 - d) Black phosphorus is most stable form of *P* but $H_f^\circ = 0$ for white phosphorus.
- 228. Entropy decreases during:
 - a) Crystallization of sucrose from solution
 - b) Rusting of iron
 - c) Melting of ice
 - d) Vaporization of camphor
- 229. At 27°C latent heat of I fusion of a compound is 2930 J/mol. Entropy change during fusion is:
 - a) 9.77 J/mol K
- b) 10.77 J/mol K
- c) 9.07 J/mol K
- d) 0.977 J/mol K

230. The values of ΔH and ΔS for the reaction.

$$C_{(\text{graphite})} + \text{CO}_2(g) \rightarrow 2\text{CO}(g)$$

Are 170 kJ and 170 JK^{-1} respectively, this reaction will be spontaneous at:

a) 510 k

- b) 710 K
- c) 910 K
- d) 1110 K
- 231. The temperature of 5 mL of a strong acid increases by 5° C when 5 mL of strong base is added to it. If 10 mL of each is mixed and complete neutralisation takes place then rise in temperature will be
 - a) 20°C

b) 10°C

c) 5°C

- d) 2°C
- 232. When an ideal gas is compressed adiabatically and reversibly, the final temperature is:
 - a) Higher than the initial temperature
 - b) Lower than the initial temperature
 - c) The same as the initial temperature
 - d) Dependent on the rate of compression
- 233. In a closed insulated container, a liquid is stirred with a paddle to increase its temperature. In this process,

which of the following is true		
a) $\Delta E = W \neq 0$, $Q = 0$	b) $\Delta E \neq 0$, $Q = W = 0$	
c) $\Delta E = W = Q = 0$	d) $\Delta E = 0$, $Q \neq 0$, $W = 0$	
234. If the bond dissociation energies of XY , X_2 and Y	$\frac{7}{2}$ (all diatomic molecules) are in t	he ratio of 1: 1: 05 and
ΔH for the formation of XY is -200 kJ mol ⁻¹ . Th	e bond dissociation energy of X_2 v	vill be
a) 100 kJ mol^{-1} b) 800 kJ mol^{-1}	c) 300 kJ mol ⁻¹ d) 400 kJ mol ^{–1}
235. The dissociation energy of CH ₄ and C ₂ H ₆ are re	spectively 360 and 620 kcal/mol.	The bond energy of C — C
bond is:		
a) 260 kcal/mol b) 180 kcal/mol	c) 130 kcal/mol d) 80 kcal/mol
236. In a calorimeter, the temperature of the calorim	eter increases by 6.12 K, the heat	capacity of the system is
1.23 kJ/g deg. What is the molar heat of decomp	oosition for NH ₄ NO ₃ ?	
a) -7.53 kJ/mol b) -398.1 kJ/mol	c) -16.1 kJ/mol d) –602 kJ/mol
237. The bond energies of F ₂ , Cl ₂ , Br ₂ and I ₂ are 1	l55.4, 243.6, 193.2 and 151.2 kJ	mol^{-1} respectively. The
strongest bond is :		
a) F – F b) Cl – Cl	c) Br – Br d) I — I
238. The enthalpy changes of formation of the gaseo	us oxides of nitrogen (N ₂ O and NC)) are positive because of:
a) The high bond energy of the nitrogen molecu	le	
b) The high electron affinity of oxygen atoms		
c) The high electron affinity of nitrogen atoms		
d) The tendency of oxygen to form O^{2-}		
239. If 900 J/g of heat is exchanged at boiling point of		
a) 43.4 J/mol b) 87.2 J/mol	c) 900 J/mol d) Zero
240. A reaction occurs spontaneously if:		
a) $T\Delta S = \Delta H$ and both ΔH and ΔS are positive		
b) $T\Delta S > \Delta H$ and both ΔH and ΔS are positive		
c) $T\Delta S < \Delta H$ and both ΔH and ΔS are positive	A.	
d) $T\Delta S > \Delta H$ and ΔH is positive and ΔS are negative.		
241. $H_2(g) + Cl(g) = 2HCl(g); \Delta H(298 K) = 22.06 k$	cal. For this reaction, ΔU is equal to	50:
a) $-22.06 + 2 \times 10^{-3} \times 298 \times 2 \text{ kcal}$		
b) $-22.06 + 2 \times 298$ kcal		
c) $-22.06 - 2 \times 298 \times 4$ kcal		
d) -22.06 kcal 242. The heat change taking place during the reaction	on H O(I) \ H O(g) is [Civon Al	U of U O(g) — E7 kgal
	III $\Pi_2 O(t) \rightarrow \Pi_2 O(g)$ is. [diveil, Δt	$I_f \text{ of } I_2 O(g) = -37 \text{ Keal},$
$\Delta H_f = \text{H}_2\text{O}(l) = -68.3 \text{ kcal}$	3 445311	D + 445 D l1
	-) + 115.3 kcal
243. ΔH for CaCO ₃ (s) \rightarrow CaO(s) + CO ₂ (g) is 176 kJ n		
a) 160 kJ b) 165.6 kJ		l) 180.0 kJ
244. When one mole of monoatomic ideal gas at external pressure of 1 atm changes volume	5	
•	from 1 L to 2 L. The imal tempe	rature in Keivin would
be		2
a) $\frac{T}{2^{2/3}}$ b) $T + \frac{2}{3 \times 0.0821}$	c) <i>T</i> d	$T - \frac{2}{3 \times 0.0821}$
2		3×0.0821
245. ΔH° , (298 K)of methanol is given by the chemica	_	
a) $CH_4(g) + \frac{1}{2}O_2(g) \to CH_3OH(g)$	b) C(graphite) $+\frac{1}{2}O_2(g) + 2$	$2H_2(g) \rightarrow CH_3OH(l)$
c) C(diamond) $+\frac{1}{2}O_2(g) \rightarrow CH_3OH(l)$	d) $CO(g) + 2H_2(g) \rightarrow CH_3OI$	H(l)

b) -1420 kJ

a) -1410 kJ

246. For the reaction, $C_2H_4(g)+3O_2(g)\rightarrow 2CO_2(g)+2H_2O$; $\Delta U=-1415$ kJ. Then ΔH at 27°C is :

c) + 1420 kJ

d) + 1410 KJ

247.	The heat of combustion	of ethanol determined by	y a bomb calorimeter is –	- 670.48 kcal mol ⁻¹ at 25°C.	
	What is ΔU at 25°C for the following reaction?				
	$C_2H_5OH(l) + \frac{7}{2}O_2(g) \to 2$	$CO_2(g) + 3H_2O(g)$			
	a) -335,24 kcal	b) –669,28 kcal	c) -670.48 kcal	d) +670.48 kcal	
248.	Which has the least entro				
	a) Graphite	b) Diamond	c) $N_2(g)$	d) $N_2O(g)$	
249.	A carnot engine operates the temperature <i>T</i> is:	s between temperature <i>T</i>	and 400 K ($T > 400$ K). If	efficiency of engine is 25%,	
	a) 400 K	b) 500 K	c) 533.3 K	d) 600 K	
250.	It is a general principle th	at if a system has the less	energy then it is:		
	a) More stable	b) Less stable	c) Unstable	d) More unstable	
251.	For the reaction, $N_2(g)$ +				
	a) $\Delta H = \Delta U$	b) $\Delta H < \Delta U$	c) $\Delta H > \Delta U$	d) None of these	
252.	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O;$				
	$\Delta H = -68.39 \text{ kg}$	* *			
	$K + aq. \rightarrow KOH(aq) + \frac{1}{2}H$	I ₂ ;			
	$\Delta H = -48 \text{ kcal}$				
	$KOH + aq. \rightarrow KOH(aq);$, ,			
	$\Delta H = -14 \text{ kcal}$	(iii)			
	The heat of formation (in	kcal) of KOH is:			
	a) $-68.39 + 48 - 14$	S. de	2		
	b) $-68.39 - 48 + 14$				
	c) $68.39 - 48 + 14$	7			
	d) 68.39 + 48 + 14				
253.	Which of the following ex		irst law of thermodynamics	s?	
	a) $\Delta E = -q + W$	b) $\Delta E = q - W$	c) $\Delta E = q + W$	d) $\Delta E = -q - W$	
254.	A thermodynamic state fu				
	a) One which obeys all the	· · · · · · · · · · · · · · · · · · ·			
	b) A quantity which is use		· ·		
	c) A quantity whose value	1			
255	d) A quantity which is use			C-1 1 1 1 .	
255.	·	O .	olecule of hydrogen gas, the	e energy of the molecule is:	
	a) Greater than that of sep	•			
	b) Equal to that of separate				
	c) Lower than that of sepa				
256	d) Sometimes lower and s	_	20 and 00 kl mal-1 years	ctively. The enthalpy of the	
230.		=	26 and 90 kj mor Tesper	ctively. The enthalpy of the	
	reaction, $2N_2O(g) + O_2(g)$ a) 8 kJ	b) 88 kJ	c) – 16 kJ	d) 304 kJ	
257		, ,	, ,	respectively. Which has the	
237,	lowest calorific fuel value	in kJ/g?			
o = -	a) CH ₄	b) C ₂ H ₄	c) C ₂ H ₆	d) All same	
258.			$_{\rm K} = 10 {\rm J mol^{-1}}$ and $R = 8.3$	$314 \text{JK}^{-1} \text{mol}^{-1}$. The value of	
	$\log_{10} K$ for a reaction, $A =$) o=	D 400	
o=-	a) 5	b) 10	c) 95	d) 100	
259.	Hess's law is based on				
	a) Law of conservation	of mass	b) Law of conservation	of energy	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

PHONE NO: 8583042324 Page | **21**

	c) First law of thermod	•	d) None of the above		
260.	60. What is the entropy change (in JK^{-1} mol ⁻¹) when one mole of ice is converted into water at 0°C?				
	(The enthalpy change for	the conversion of ice to liq	uid water is 6.0 kJ mol $^{-1}$ at	: 0°C)	
	a) 20.13	b) 2.013	c) 2.198	d) 21.98	
261.	Which is an extensive pro	perty of the system?			
	a) Temperature	b) Volume	c) Refractive index	d) Viscosity	
262.	For the reaction; C ₂ H ₅ OH	$(l) + 30_2(g) \rightarrow 200_2(g) +$	- $3H_2O(l)$ which one is true	?	
	a) $\Delta H = \Delta U - RT$				
	b) $\Delta H = \Delta U + RT$				
	c) $\Delta H = \Delta U + 2RT$				
	d) $\Delta H = \Delta U - 2RT$				
263.		$^{\circ}H_{3}(g)$ is 228 kcal per mol a	and that of P ₂ H ₄ (g)is 335 kg	cal per mol. The energy of	
	P – P bond is	3 (8) = = P		P 8,	
		b) 31 kcal/mol	c) 26 kcal/mol	d) 204 kcal/mol	
264	If, $H_2(g) + Cl_2(g) \rightarrow 2HC$		ej 20 near, mor	a) 20 1 hear, mer	
2011	$2Na(s) + 2HCl(g) \rightarrow 2N$				
	_	-152 kcal then,			
	$Na(s) + 0.5 Cl_2(g) \rightarrow Na(s)$	•			
	a) 108 kcal	$\Delta I(3), \Delta II = 1$			
	b) 196 kcal				
	c) -98 kcal				
	d) 54 kcal				
265	-	D . AU - 10.4 b	d it following that		
203.		$P_{\text{(red)}} \rightarrow P_{\text{(red)}}; \Delta H = -18.4 \text{ kg}$	g it following that.		
	a) Red P is readily formed				
	b) White P is readily form				
	c) White P cannot be con				
0.66	-	ted into red P and red P is r			
266.		3.7 Kcal then the heat of he	eutralization for complete n	eutralization of one mole of	
	H_2SO_4 by a base will be:	1) 0741 1		D 0.4051 1	
0.45	a) – 13.7 kcal	,	c) – 6.85 kcal	d) – 3.425 kcal	
267.				(a) when 1 mol of water is	
		•	ar enthalpy of vaporization	at 1 bar and 373 K is 41 kJ	
	$\text{mol}^{-1} \text{ and } R = 8.3 \text{ J mol}^{-1}$	-			
	a) 41.00 kJ mol ⁻¹	b) 4.100 kJ mol ^{–1}	c) 3.7904 kJ mol ^{–1}	d) 37.904 kJ mol ⁻¹	
268.	Change in entropy for a re				
	a) $2.303 nR \log_{10} \frac{V_2}{V_1}$	b) $nR \log_{10} \frac{V_2}{T}$	c) $nR \log_e \frac{P_1}{P_2}$	d) All of these	
	1	1	- Z		
269.				one where, the decrease.	
	a) Entropy	b) Enthalpy	c) Gibbs energy	d) None of these	
270.	Which of the following co	nditions will always lead to	o a non spontaneous chang	e?	
	a) Positive ΔH and positive	ve ΔS	b) Negative ΔH and negat	tive ΔS	
	c) Positive ΔH and negati	ve ΔS	d) Negative ΔS and position	ve ΔS	
271.	Equal volume of two mor	noatomic gases, A and B , at	t same temperature and pr	ressure are mixed. The ratio	
	of specific heats (C_P/C_V)	of the mixture will be:			
	a) 0.83	b) 1.50	c) 3.3	d) 1.67	
272.	Two atoms of hydrogen c	ombine to form a molecule	of hydrogen gas, the energ	y of the H ₂ molecule is :	
	a) Greater than that of se	parate atoms			
	b) Equal to that of separa	te atoms			
	c) Lower than that of sep	arate atoms			

d) Sometimes lower and	sometimes higher				
273. The heats of neutralizat	ion of four acids A,B,C and	d <i>D</i> are – 13.7, –9.4, –11.2	and -12.4 kcal respectively		
when they are neutralize	when they are neutralized by a common base. The acidic character obeys the order:				
a) $A > B > C > D$	b) $A > D > C > B$	c) $D > C > B > A$	d) $D > B > C > A$		
274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$	l); $\Delta H = -68$ kcal. The hea	it change, for the decompos	sition of 3.6 g of water is :		
a) 136 kcal	b) 13.6 kcal	c) 1.36 kcal	d) 68 kcal		
275. When 500 J heat is given	to the gas X in an isobaric	process its work done come	es out as 142.8 J. The gas X		
is					
a) O ₂	b) NH ₃	c) He	d) SO ₂		
276. Diborane is a potential re	ocket fuel which undergoes	combustion according to t	he equation		
$B_2H_6(g) + 3O_2(g) \rightarrow B_2G$					
•	nange for the combustion of				
$(i)2B(s) + \frac{3}{2}O_2(g) \rightarrow B_2(g)$	$O_3(s)$; $\Delta H = -1273$ kJ per r	nol			
$(ii)H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2$	$_{2}O(l)$; $\Delta H = -286$ kJ per m	ol			
(iii) $H_2O(l) \rightarrow H_2O(g); \Delta$					
$(iv)2B(s) + 3H_2(g) \rightarrow B_2$	$_{2}H_{6}(g); \Delta H = 36 \text{ kJ per mol}$				
a) +2035 kJ per mol	b) –2035 kJ per mol	c) +2167 kJ per mol	d) –2167 kJ per mol		
277. To calculate the amour	nt of work done in joules	during reversible isother	rmal expansion of an ideal		
gas, the volume must b					
a) m ³ only	b) dm ³ only	c) cm ³ only	d) Any of these		
278. Calorific value of carbohy	ydrates is approximately:				
a) 4.0 kcal/g	b) 16.0 kcal/g	c) 20 kcal/g	d) 9.0 kcal/g		
279. For a given substance T_1 and T_2 are freezing point and melting point of a substance. Which of the graph					
represents correctly, the	variation of ΔS with tempe	rature?			
T ₂	T_2				
	b) $\triangle S = T_1$	$\frac{1}{1}$	d) $\Delta S \stackrel{T_1 T_2}{\sim}$		
$\begin{bmatrix} a_1 & -5 \\ 1 \end{bmatrix}$	T ₁	c) 45/	a) S/VV		
Т		T	T		
280. Which is correct for an	endothermic reaction?				
a) ΔH is positive		c) ΔE is negative	d) $\Delta H = 0$		
281. When a solid melts, there		, 0	,		
a) An increase in enthalp					
b) No change in enthalpy					
c) A decrease in enthalpy	y				
d) A decrease in internal	energy				
282. Maximum entropy will b	e in which of the following?				
a) Ice	b) Liquid water	c) Snow	d) Water vapour		
283. When enthalpy and entre		eaction are -2.5×10^3 cal	and 7.4 cal		
	ct the reaction at 298 K is				
a) Spontaneous	b) Reversible	c) Irreversible	d) Non-spontaneous		
284. A closed flask contains v	water in all its three states	, solids, liquid and vapour	at U°C. In this situation the		

average KE of the water molecule will be:

- a) Maximum in vapour state
- b) Maximum in solid state
- c) Greater in the liquid than in vapour state
- d) Same in all the three states
- 285. If $C(s) + O_2(g) \to CO_2(g)$; $\Delta H = r$

	and $CO(g) + \frac{1}{2}O_2 \rightarrow CO_2(g)$; $\Delta H = s$ then, the h	eat of formation of CO is				
	a) <i>r+s</i> b) <i>r-s</i>	c) $s-r$	d) <i>rs</i>			
286.	The value of ΔH° for the reaction $Cu^{+}(g) + I^{-}(g) + Cu(g)$ is 745 kJ mol ⁻¹ , and the electron affinity o formation of one mole of $CuI(g)$ from $Cu(g)$ and $I(g)$	f (I)g is -295 kJ mol ¹ , the	. If the ionisation energy of			
	a) -446 kJ mol^{-1} b) 450 kJ mol^{-1}	c) 594 kJ mol ⁻¹	d) 4 kJ mol ⁻¹			
287	The entropy of the universe:	cj 374 kj moi	uj + kj moi			
2071	a) Increasing and tending towards maximum value					
	b) Decreasing and tending to be zero					
	c) Remains constant					
	d) Decreasing and increasing with a periodic rate					
288.	The internal energy of a substance					
	a) Increases with increase in temperature					
	b) Decreases with increases in temperature					
	c) Can be calculated by the relation $E = mc^2$					
	d) Remains unaffected with change in temperature					
289.	ΔH_f of graphite is 0.23 kJ/mol and ΔH_f of diamond	is 1.896 kJ/mole. ΔH _{transitio}	_{on} from graphite to diamond			
	is:					
	a) 1.66 kJ/mole b) 2.1 kJ/mole	c) 2.33 kJ/mole	d) 1.5 kJ/mole			
290.	When two moles of hydrogen expands isotherm	nally against a constant p	ressure of 1 atm, at 25°C			
	from 15 L to 50 L, the work done (in litre atm)	will be				
	a) 17.5 b) 35	c) 51.5	d) 70			
291.	Which value of heat of formation indicates that the	product is the least stable?				
	a) – 94 kcal b) – 231.6 cal	c) + 21.4 kcal	d) + 64.8 kcal			
292.	The heat of combustion for C , H_2 and CH_4 are -3	49.0, -241.8 and -906.7	kJ respectively. The heat of			
	formation of CH_4 is :	LACTTAR				
	a) 174.1 kJ b) 274.1 kJ	c) 374.1 kJ	d) 74.1 kJ			
293.	Given,					
	(i)S + $O_2 \to SO_2$, $\Delta H = -298.2 \text{ kJ}$					
	(ii)SO ₂ + $\frac{1}{2}$ O ₂ \rightarrow SO ₃ , $\Delta H = -98.7 \text{ kJ}$					
	(iii) $SO_3 + H_2O \rightarrow H_2SO_4$, $\Delta H = -130.2 \text{ kJ}$					
	(iv) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$, $\Delta H = -287.3 \text{ kJ}$					
	Then the enthalpy of formation of H_2SO_4 at 298 K w	rill he				
	a) -814.4 kJ b) +320.5 kJ	c) -650.3 kJ	d) -933.7 kJ			
294.	Based on the first law of thermodynamics, which		*			
	a) For an isochoric process= $\Delta E = -Q$	b) For an adiabatic prod				
	c) For an isothermal process= $Q = +W$	d) For a cyclic process=				
295	According to Hess's law, the heat of reaction depend		·2 - W			
275.	a) Initial condition of reactants	b) Initial and final conditi	ons of reactants			
	c) Intermediate path of the reaction	d) End conditions of reac				
296.	In which case, a spontaneous reaction is possible at	-				
	a) $\Delta H - \text{ve}$, $\Delta S + \text{ve}$ b) $\Delta H - \text{ve}$, $\Delta S - \text{ve}$	c) ΔH + ve, ΔS + ve	d) In none of the cases			
297.	Select the incorrect statement:	,	,			
	a) Combustion of F ₂ is exothermic					
	b) Combustion of N ₂ to N ₂ O is endothermic					
	c) A good fuel have higher calorific value					
	d) Nutrition calorie = 10^3 calories or 1 cal or 1 kcal					

298		· ·	$H(aq) + HCl(aq) \rightarrow NaCl(aq)$	
		nthaipy change in the follow	wing reaction : $Ba(OH)_2 + 1$	$H_2SO_4(aq) \rightarrow BaSO_4(s) +$
	$2H_2O(l)$	1) 7611	.) 44411	1) 22011
200	a) – 57 kJ	b) – 76 kJ	c) – 114 kJ	d) – 228 kJ
299		•	sothermally and reversil	ole from a pressure of 2
		te of ΔE and q are ($R=2$ of	*	_
	a) 0, -965.84 cal		b) -965.84 cal, -865.58 (
	c) +865.58 cal, -865.58		d) +965.84 cal, +865.5	8 cal
300	. Change in entropy is nega			
	a) Bromine $(l) \rightarrow$ Bromi	· - ·		
	b) $C(s) + H_2O(g) \rightarrow CO(g)$			
	c) $N_2(g, 10 \text{ atm}) \rightarrow N_2(g$			
	d) Fe (1 mol, 400 K) \rightarrow F	'e(1 mol, 300 K)		
301	. Hess's law is related to:			
	a) Change in heat during	a reaction		
	b) Rates of reaction			
	c) Equilibrium constant			
	d) Influence of pressure of	_		
302	. Heat of dissociation of be	nzene of elements is 5335	kJ/mol. The bond enthalpie	es of
	-C - C - ; C = C and -C -	· H		
		🗲 🗓		
			onance energy of benzene is	
	a) 1.15 kJ	b) 15.1 kJ	c) 937.2 kJ	d) 1511 kJ
303		C temperature is expanded	reversibly from 2 litre to 2	20 litre. Find entropy change
	(R = 2 cal/mol K).	13.0	1.0.001.00.0.1	1) 0 2
204	a) 92.1	b) 0	c) 4	d) 9.2
304	. Work done by the system	-	.) 7	J) N
205	a) Positive	b) Negative	c) Zero	d) None of these
303		that does 500 cal of work	on surrounding and 300	cal of neat is absorbed
	by the system?			
	a) - 200 cal	b) - 300 cal	c) +200 cal	d) +300 cal
306	. Which fuel provides the h	-		
	a) Charcoal	b) Kerosene	c) Wood	d) Dung
307			s-885389 J at 298 K. The	ΔH combustion for CH_4
	in J mol^{-1} at this temper			
	(Given that, $R = 8.314$	$JK^{-1} mol^{-1}$		
	a) – 55337	b) -880430	c) – 885389	d) – 890348
308	. Human body is an exan	nple of		
	a) Open system	b) Closed system	c) Isolated system	d) None of these
309	A hypothetical reaction	$A \rightarrow 2B$, proceeds throu	gh following sequence of	fsteps
	(i) $A \rightarrow C$; $\Delta H = q$	-	0 1	1
	$(iii)\frac{1}{2}D \to B; \ \Delta H = x$. ,		
	Then the heat of reaction	on i		
			c) $q + v + 2x$	d) $q + 2v - 2x$
310				nodynamics should be taker
	as		-	•

PHONE NO: 8583042324 Page | 25

a) 100

b) 50

c) Zero

- d) Different for different substance
- 311. Identify the state quantity among the following:

a) q

b) q - W

c) q + W

d) q/W

312. For the following two reactions,

 $(i)CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O$

 $\Delta H = -890.4 \text{ kJ}$

(ii) $2HgO(s) \rightarrow 2Hg(l) + O_2(g) - 181.6 \text{ kJ}$

Which one of the following statements is correct?

- a) Both of them are exothermic
- b) Both of them are endothermic
- c) (i) is exothermic and (ii) is endothermic
- d) (i) is endothermic and (ii) is exothermic
- 313. From the following data, the heat of formation of $Ca(OH)_2(s)$ at 18°C iskcal:

$$CaO(s) + H_2O(l) = Ca(OH)_2(s);$$

$$\Delta H = -15.26 \text{ kcal (i)}$$

$$H_2O(l) = H_2(g) + \frac{1}{2}O_2(g);$$

$$\Delta H = 68.37 \text{ kcal (ii)}$$

$$Ca(s) + \frac{1}{2}O_2(g) = CaO(s);$$

$$\Delta H = -151.80 \text{ kcal}$$
 (iii)

- a) -98.69
- b) -235.43
- c) 194.91
- d) 98.69
- 314. If $\frac{1}{2}X_2O(s) \rightarrow X(s) + \frac{1}{4}O_2(g)$; $\Delta H = 90$ kJ, then heat change during reaction of metal 'X' with one more of O₂ to form oxide to maximum extent is:
 - a) 360 KJ
- b) -360 KJ
- c) -180 KJ
- d) + 180 KJ

- 315. Decrease in Gibbs energy of a reacting system indicates to:
- a) Exothermic reaction b) Equilibrium reaction c) Spontaneous reaction d) Slow reaction

316.
$$S + \frac{3}{2}O_2 \rightarrow SO_3 + 2x \text{ kcal};$$

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3 + y \text{ kcal};$$

The heat of formation of SO₂ is:

- b) (2x + y)
- c) (x + y)
- d) 2x/y
- 317. The standard molar heat of formation of ethane, CO_2 and water (l) are respectively -21.1 94.1 and -68.3 kcal. The standard molar heat of combustion of ethane will be
 - a) -372 kcal
- b) 162 kcal
- c) -240 kcal
- d) 183.5 kcal

- 318. Among them intensive property is

- b) Volume
- c) Surface tension
- d) Enthalpy
- 319. Equal volume of C_2H_2 and H_2 are combusted under identical condition. The ratio of their heat of combustion is:

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g); \quad \Delta H = -241.8 \text{ kJ}$$

$$C_2H_2(g) + 2\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(g);$$

$$\Delta H = -1300 \text{ kJ}$$

PHONE NO: 8583042324 Page | 27

	a) 5.37/1			
	b) 1/5.37			
	c) 1/1			
	d) None of these			
320.	1 litre – atmosphere is ed	jual to:		
	a) 101.3 J	b) 24.206 cal	c) $101.3 \times 10^7 \text{ erg}$	d) All of these
321.	For the precipitation of Ag	•	, 0	
	a) $\Delta H = 0$	b) $\Delta G = 0$	c) $\Delta G = -ve$	d) $\Delta H = \Delta G$
322.	-	•	•	t of combustion of ethylene
		Ω_2 (at NTP) that entered in	•	,
	a) 296.5 mL	b) 296.5 litre	c) 6226 × 22.4 litre	d) 22.4 litre
323.	,	eaction, $C(s) + 2S(s) \rightarrow CS$,
	a) Heat of solution of CS ₂	saction, d(b) 1 20(b)		
	b) Heat of fusion of CS ₂			
	c) Heat of formation of CS			
	d) Heat of combustion of o			
224	•		re —94 0 kI and —152 kI re	spectively and the enthalpy
<i>,</i>		\rightarrow CaO(s) + CO ₂ (g) is 42 k		
	a) – 42 kJ	b) -202 kJ	c) + 202 kJ	d) – 288 kJ
225		•		rsible isothermal process of
, 2 .	an ideal gas is equal to:	1 V3 log V lot reversible at	arabatic process and rever	sible isothermal process of
	an ideal gas is equal to.			1
	a) γ	b) 1 – γ	c) $\gamma - 1$	$d)\frac{1}{\nu}$
326	In which of the followin	σ nrocesses of neutralizati		, _{alisation} is less than that of
20.	$\Delta H_{\text{ionisation}}$ of water?	g processes of neutranzaci	ion magnitude of Affineutra	alisation is less than that of
	a) HCl + NaOH	b) H ₂ SO ₄ + NaOH	c) CH ₃ COOH + NaOH	4) HCIO · + KOH
227	A boiled egg show a/an	· - ·	c) chi3coon + Naon	u) IIGIO ₄ + KOII
, ,	a) Increase	b) Decrease	c) No change	d) None of these
228	Which unit represents lar		c) No change	d) None of these
020.	a) Calorie	b) Joule	c) Erg	d) Electron volt
220		- ·	•	-
) 4 7.		f carbon to CO_2 is -393 kJ/	moi. The heat released upo	on formation of 33.2 g of
	CO_2 from carbon and oxyga) +325 kJ	b) –31.5 kJ	c) -315 kJ	d) +31.5 kJ
220	,	•	,	
550.	•	-	nge energy with the su	rroundings. The mode of
	transference of energy car		a) Heat and radiation	d) None of these
221	a) Heat	b) Work	c) Heat and radiation	d) None of these
001.	a) Closed system	oride with sodium hydroxid b) Isolated system	=	
222	,	,	c) Open system	d) None of these
034.	Identify the correct stater		h) At abacluta zono of tom	unaratura the entropy of all
	a) At 0°C, the entropy of a substance is taken to b		-	perature, the entropy of all
			perfectly crystalline su	•
	-	perature, the entropy of all	=	
	crystalline substance is	_	perfectly crystalline su	bstance is taken to be zero
333.	The matter has highest en	= -		
22.4	a) Solid state	b) Liquid state	c) Gaseous state	d) Equal in all
334.	$H_2(g) + \frac{1}{2}O_2(g) = H_2O(l)$; $\Delta H_{298K} = -68.32 \text{ kcal. I}$	Heat of vaporization of w	rater at 1 atm and 25°C is
	10.52 kcal. The standard l	neat of formation (in kcal) o	of 1 mole of water vapour a	nt 25°C is :
	a) -78.84	b) 78.84	c) + 57.80	d) -57.80
335.	For vaporization of water	r at 1 atmospheric pressu	re, the values of ΔH and	ΔS are 40.63 kJ mol ⁻¹ and

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

	108.8 JK ⁻¹ mol ⁻¹ , respect	ively. The temperature wh	nen Gibbs energy change ($\Delta G)$ for this transformation
	will be zero, is:			
	a) 273.4 K	b) 393.4 K	c) 373.4 K	d) 293.4 K
336.	For an adiabatic process:			
	a) $Q = +W$	b) $Q = 0$	c) $\Delta U = q$	$d) P\Delta V = 0$
337.	The $\Delta H_{\text{ionisation}}^{\circ}$ for HCN a	nd CH ₃ COOH are 45.2 and	2.1 kJ mol ⁻¹ .Which of the	following correct?
	a) $pKa_{HCN} < pKa_{CH_3COOH}$			
	b) $pKa_{HCN} > pKa_{CH_3COOF}$	ł		
	c) $pKa_{HCN} = pKa_{CH_3COOH}$			
	d) None of the above	1		
338.	•	aking place in the blast f	furnace is endothermic?	
	a) $CaCO_3 \rightarrow CaO + CO_2$	Samuel Process	b) $2C + O_2 \rightarrow 2CO$	
	c) $C + O_2 \rightarrow CO_2$		d) $Fe_2O_3 + 3CO \rightarrow 2Fe$	± 3CO
220	Hess's law is used to cal	gulato	u) re203 300 / 2re	
337.		culate	b) F.,	
	a) Enthalpy of reaction		b) Entropy of reaction	
	c) Work done in reactio		d) All of these	
340.	For spontaneity of a cell, v		3.46	D. 4.0
	a) $\Delta G = 0, \Delta E = 0$		c) $\Delta G = +\text{ve}, \Delta E = +\text{ve}$	
341.			-68 kcal, then enthalpy of	
	a) 54.3 kcal	b) –54.3 kcal	c) 71.3 kcal	d) –71.3 kcal
342.		sothermal process is given		
	a) 2.303 <i>RT</i> $\log \frac{V_2}{V_1}$	b) $\frac{nR}{(\gamma-1)}(T_2-T_1)$	c) 2.303 $RT \log \frac{V_1}{V_2}$	d) None of these
343.	Internal energy of an idea	l gas depends on:		
	a) Pressure	b) Temperature	c) Volume	d) None of these
344.	For a given substance, me variation of ΔS <i>vs</i> T ?	elting point T_B and freezing	g point is T_A , which of the f	following represents correct
	T _B	Т в—	I	
	a) ^{ΔS} T _A	b) AS	c) AS AS	d) AS TA TB
	a) 'A	b) ^		u) / V \
	T	T (2 = 2)	T	T
345.	- '		05, 120 and 220 kcal/mol	respectively, then ΔH in the
	reaction, $2H_2(g) + O_2(g)$			1) ===0
0.46	a) – 115	b) – 130	c) – 118	d) – 550
346.		ised for measuring heat ch	-	D.G. I.
245	a) Voltameter	b) Voltmeter	c) Calorimeter	d) Coulometer
347.		he process, $C(s) \rightarrow C(g)$ is		1) () 1 11
240	a) Fusion	b) Vaporisation	c) Combustion	d) Sublimation
348.				$-94.1 \text{ and } -68.3 \text{ kcal mol}^{-1}$
	•	• , ,	ne following reaction at 25°	C:
		$O_2(g) = CO_2(g) + 2H_2O(l)$	240.6	1) 242.0
240	a) -144.5	b) -180.3	c) -248.6	d) -212.8
349.		on of heat of neutralization		
			b) The heat set free or ab	_
		one gram molecule of a bas		ralized by one gram atom of
	in dilute solution at a st	=	a base at a stated temp	
	c) The heat set free or abs			one gram-equivalent of an one gram-equivalent of a

of an acid neutralized by a normal solution base in dilute solution at a stated temperature containing one gram-equivalent of a base at a stated temperature 350. Thermochemistry is the study of relationship between heat energy and: a) Chemical energy b) Activation energy c) Frictional energy d) None of these 351. Enthalpy change for the reaction, $4H(g) \rightarrow 2H_2(g)$ is - 869.6 kJ The dissociation energy of H-H bond is: b) $-434.8 \, \text{kJ}$ a) + 217.4 kJc) -869.6 kJd) + 434.8 kJ352. Which of the following is true for an adiabatic process? a) $\Delta H = 0$ b) $\Delta W = 0$ c) $\Delta q = 0$ d) $\Delta V = 0$ 353. Which of the following is an intensive property? a) Volume b) Enthalpy c) Surface tension d) Free energy 354. $C_6H_{12}(l) + 9O_2(g) = 6H_2O(l) + 6CO_2(g); \Delta H_{298K} = -936.9 \text{ kcal. Thus}$: a) $-936.9 = \Delta U - (2 \times 10^{-3} \times 298 \times 3)$ kcal b) $+936.9 = \Delta U + (2 \times 10^{-3} \times 298 \times 3)$ kcal c) $-936.9 = \Delta U - (2 \times 10^{-3} \times 298 \times 2)$ kcal d) $-936.9 = \Delta U + (2 \times 10^{-3} \times 298 \times 2)$ kcal 355. The work done by a weightless piston in causing an expansion ΔV (at constant temperature), when the opposing pressure, *P* is variable, is given by: d) None of these a) $W = -\int P\Delta V$ b) W = 0c) $W = -P\Delta V$ 356. If a gas has 2 atm and 5 atm pressure at 30°C and 27°C respectively. Then it will b) Warm on expansion a) Cool on expansion d) None of these c) No change on expansion 357. Two moles of helium gas expanded isothermally and irreversible at 27°C from volume 1 dm³ to 1 m³ at constant pressure of 100 k Pa. Calculate the work done. a) 99900 kJ b) 99900 J c) 34464.65 kJ d) 34464.65 J 358. The efficiency of heat engine is maximum when: a) Temperature of source > temperature of sink b) Temperature of sink > temperature of source c) Temperature difference of source and sink is minimum d) Temperature difference of source and sink is maximum 359. Which one of the following has ΔS° greater than zero? a) $CaO + CO_2(g) \rightleftharpoons CaCO_3(s)$ b) $NaCl(aq) \rightleftharpoons NaCl(s)$ c) $NaNO_3(s) \rightleftharpoons Na^+(aq) + NO_3^-(aq)$ d) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ 360. A spontaneous change is one in which the system suffers a) A lowering of entropy b) No energy change d) A lowering of free energy c) An increase in internal energy 361. Which of the following are not state functions? (I) q + w(II) q(III) w(IV) H - TSa) (II), (III) and (IV) c) (II) and (III) b) (I), (II) and (III) d) (I) and (IV) 362. An isolated system is that system in which: a) There is no exchange of energy with the surroundings b) There is exchange of mass and energy with the surroundings c) There is no exchange of mass and energy with the surroundings

d) There is exchange of mass with the surroundings

363. Thermodynamics is concerned with: a) Total energy of a system

				Gplus Education
	b) Energy changes in a sy	stem		
	c) Rate of chemical change			
	d) Mass changes in nuclea			
364	Which of the reactions de	fines $\Delta H^{\circ} f$?		
	a) $C_{(diamond)} + O_2(g) \rightarrow 0$	$\mathrm{CO}_2(\mathrm{g})$		
	b) $\frac{1}{2}$ H ₂ (g) + $\frac{1}{2}$ F ₂ (g) \rightarrow H	F(σ)		
	L L			
	c) $N_2(g) + 3H_2(g) \rightarrow 2NH_1$			
	d) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$	₂ (g)		
365	A process is taking plac	e at constant temperat	ure and pressure. Then	
	a) $\Delta H = \Delta E$	b) $\Delta H = T \Delta S$	c) $\Delta H = 0$	d) $\Delta S = 0$
366	. An isothermal process is	associated with:		
	a) Constant entropy			
	b) Constant temperature			
	c) Constant enthalpy			
	d) Large change in heat co			
367	$C(s) + O_2(g) \to CO_2(g)$			
	$2CO(g) + O_2 \rightarrow 2CO_2(g)$			
	The heat of formation of	10,		-
	a) -26.4 kcal	b) 41.2 kcal	c) 26.4 kcal	d) 229 . 2 kcal
368	$C_{\text{graphite}} + O_2(g) \rightarrow CO_2(g)$	The state of the s		
	a () a ()	$\Delta H = -94.05 \text{ kca}$	ıl mol ^{–1}	
	$C_{\text{diamond}} + O_2(g) \rightarrow CO_2(g)$		i 1–1 . i c	
		$\Delta H = -94.05 \text{ kca}$		
	a) $C_{\text{diamond}} \rightarrow C_{\text{graphite}}$;	$\Delta H_{298K} = +450 \text{ cal mo}$	CATION	
	b) $C_{\text{graphite}} \rightarrow C_{\text{diamond}}$;	$\Delta H_{298K} = -450 \text{ cal mo}$	CAHON	
	c) Diamond is harder tha	• •		
260	d) Graphite is the stabler	=		
369	. Enthalpy change for a rea a) The physical states of 1	• •	oon	
	b) Use of different reactar	-		
	c) The nature of intermed	•		
	d) The differences in initi	•	of involved substances	
370	. Which of the following is	_		nder adiabatic condition?
				0 d) $q = 0, \Delta T = 0, w = 0$
371	For a reaction at 25°C (enthalpy change (ΔH) a	nd entropy change (ΔS)) are -11.7×10^3 J mol ⁻¹ and
	$-105 \mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}\mathrm{respect}$	ively. The reaction is:		
	a) Spontaneous	b) Non-spontaneous	c) Instantaneous	d) None of these
372	Which of the following	is a path function?		
	a) Internal energy	b) Enthalpy	c) Work	d) Entropy
373			t is supplied to it. The cl	nange in internal energy of the
	system during the proces			22.4.4
	a) 32 J	b) 40 J	c) 36 J	d) 44 J

a) $\Sigma U_P - \Sigma U_R$ b) $\Sigma U_R - \Sigma U_P$ c) $\Sigma H_P - \Sigma H_R$ d) $\Sigma H_R - \Sigma H_P$ 375. Boiling point of a liquid is 50 K at 1 atm and $\Delta H_{\text{vap.}} = 460.6$ cal mol⁻¹. What will be its b. p. at 10 atm? a) 150 K b) 75 K c) 100 K d) 200 K

c) $\Sigma H_P - \Sigma H_R$

a) $\Sigma U_P - \Sigma U_R$

374. Heat of reaction at constant volume is equal to :

b) $\Sigma U_R - \Sigma U_P$

d) $\Sigma H_R - \Sigma H_P$

376. The change in the enthal	py during the reaction, NaO	$H + HCI \rightarrow NaCI + H_2O$, is	called:
a) Heat of reaction	b) Heat of neutralization	c) Heat of formation	d) Heat of liquefaction
377. The heat of combustion	n of rhombic and monocli	inic sulphur are 70.96 ai	nd 71.03 kcal. The heat of
transition of $S_{R\to M}$ is:			
a) 70.96 kcal	b) 71.03 kcal	c) -70 cal	d) + 70 cal
378. Hess law is applicable for	r the determination of heat	of	
a) Reaction	b) Formation	c) Transition	d) All of these
379. A heat engine absorbs he	eat Q_1 at temperature T_1 and	d heat Q_2 at temperature T_2	, work done by the engine
is $(Q_1 + Q_2)$ this data			
a) Violates 1st law of the	rmodynamics		
b) Violates 1st law of the	rmodynamics if a_1 is –ve		
c) Violates 1st law of the	rmodynamics if a_2 is –ve		
d) Does not violates 1st l			
380. In which of the following	<u>•</u>	ion can not occur?	
a) ΔH and ΔS increase an		b) ΔH and ΔS decrease an	$ d \Delta H > T \Delta S $
c) ΔH increase and ΔS de		d) ΔH decreases and ΔS i	
381. $C_{\text{diamond}} + O_2(g) \rightarrow CO_2$,	
	(g); $\Delta H = -393.5 \text{ kJ}$		
	s formed from graphite, is:		
a) – 1.5 kJ	b) + 1.5 kJ	c) $+ 3.0 \text{ kJ}$	d) – 3.0 kJ
382. Entropy change of fusion	, ,		ay olong
			d) None of these
a) $\Delta S_{(f)} = \frac{f}{T}$	b) $\Delta S_{(f)} = \frac{\Delta G_f}{T}$	c) $\Delta S_{(f)} = \frac{f}{\Delta T}$	a) Hone of these
383. At 27°C, one mole of an io	deal gas is compressed isotl	nermally and reversibly fro	om a pressure of 2 atm to 10
atm. The values of ΔE an	dq are $(R=2)$		
a) 0,—965.84 cal		b) -965.84 cal, -865.58	cal
c) +865.58 cal, -865.58	cal	d) -865.58 cal, -865.58	cal
384. When hydrogen and oxy	gen burn to form water in a	n oxyhydrogen torch, the e	ntropy change is:
a) Negative	0.100100		
b) Positive			
c) Zero			
d) May be positive or neg	gative		
385. The temperature coeffici		given by:	
			d) All of these
a) $\left(\frac{\partial T}{\partial T}\right)_{P} = \frac{1}{nF}$	b) $\left(\frac{\partial E}{\partial T}\right)_P = \left(\frac{E_2 - E_1}{T_2 - T_1}\right)_P$	c) $\left(\frac{\partial T}{\partial T}\right)_{P} = \left[\frac{\partial F}{\partial F} + E\right]_{T}$	
386. The internal energy of or		•	
	_	RT	d) $\frac{3KT}{2}$
a) $\frac{3}{2}RT$	b) $\frac{KT}{2}$	c) ${2}$	$\frac{d}{2}$
387. The resultant heat chang	e in a reaction is the same v	vhether it takes place in on	e or several stages. This
statement is called			
a) Lavoisier and Laplace	law	b) Hess's law	
c) Joule's law		d) Le-Chatelier's principl	e
388. ΔH for transition of car	bon in the diamond form	to carbon in the graphite	e form, is – 453.5 cal. This
suggests that :			
a) Graphite is chemically	different from diamond		
b) Graphite is as stable a			
c) Graphite is more stabl	e than diamond		
d) Diamond is more stab			
389 The enthalpy of fusion of	• •		

a) 18 kJ	b) 8 kJ	c) 80 kJ	d) 6 kJ		
390. For the reversible vapor					
a) <i>ΔH</i>	b) Δ <i>S</i>	c) Zero	d) $\Delta H/T$		
391. Molar heat of vaporisat	ion of a liquid is 6 kJmol^{-1} .	If the entropy change is 16	J $mol^{-1}K^{-1}$, the boiling point		
of the liquid is	_				
a) 273 K	b) 375℃	c) 375 K	d) 102°C		
392. The enthalpy of fusion	of water is 1.435 kcal/mol.	The molar entropy change	e for the melting of ice at 0°C		
is:					
a) 5.260 cal/(mol K)	b) 0.526 cal/(mol K)	c) 10.52cal/(mol K)	d) 21.04 cal/(mol K)		
393. Which of the followin	g is an endothermic react	tion?			
a) $N_2(g) + 3H_2(g) - 9$	a) $N_2(g) + 3H_2(g) - 92kJ \rightarrow 2NH_3(g)$ b) $N_2(g) + O_2(g) + 180.8 kJ \rightarrow 2NO(g)$				
c) $H_2(g) + Cl_2(g) \rightarrow 2$	HCl(g) + 184.6 kJ	d) $C(graphite) + 2H_2($	$g) \rightarrow CH_4(g) + 74.8 \text{ kJ}$		
394. The ΔG in the process o	f melting of ice at -15°C is:				
a) $\Delta G = -ve$	b) $\Delta G = +ve$	c) $\Delta G = 0$	d) All of these		
395. A container has hydrog	en and oxygen mixture in ra	atio of 1 : 1 by weight, then			
a) Internal energy of th	e mixture decreases	b) Internal energy of the	e mixture increases		
c) Entropy of the mixtu	re increases	d) Entropy of the mixtu	re decreases		
396. Which one is not a spon	taneous process?				
a) Dissolution of CuSO ₄	in water				
b) Water flowing down	the hills				
c) Flow of current from	low potential to high poter	ntial			
d) None of the above					
		gainst a constant external p	pressure of 1 atm to a volume		
of 15 litre. The work do					
a) 1.215×10^3 J		c) 121.5×10^3 J	-		
			f equal volume of H ₂ and CO)		
is: (TRILLIS EDITION					
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$	is: $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g); \Delta H = -241.8 \text{ kJ}$				
1					
$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2$	$_{2}(g); \Delta H = -283 \text{ kJ}$				
a) 241.8 kJ	b) 283 kJ	c) – 1312 kJ	d) 1586 kJ		
399. Work done in reversible		by:			
a) 2.303 <i>RT</i> $\log \frac{V_2}{V_1}$	b) $\frac{nR}{(\nu-1)}(T_2-T_1)$	c) 2.303 <i>RT</i> $\log \frac{V_1}{V_2}$	d) None of these		
400. The H—H bond energy is 430 kJ mol ⁻¹ and Cl—Cl bond energy is 240 kJ mol ⁻¹ . ΔH for HCl is -90 kJ. The					
H—Cl bond energy is ab		,	ŕ		
a) 425 kJ mol ⁻¹	b) 213 kJ mol ⁻¹	c) 360 kJ mol ⁻¹	d) 180 kJ mol ^{–1}		
401. Given,					
$NH_3(g) + 3Cl_2(g) \rightleftharpoons NCl_3(g) + 3HCl(g); -\Delta H_1$					
$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g);$ $-\Delta H_2$					
$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$	$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g);$ ΔH_3				
	f $NCl_3(g)$ in the terms of ΔH	H_1 , ΔH_2 and ΔH_3 is:			
a) $\Delta H_f = -\Delta H_1 + \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$					
b) $\Delta H_f = \Delta H_1 + \frac{\Delta H_2}{2} -$	_				
c) $\Delta H_f = \Delta H_1 - \frac{\Delta H_2}{2} - \frac{\Delta H_2}{2}$	3				
, – Z	$\frac{1}{2}\Delta H_3$				

402.		in to evaporate from a vess alpy of vaporisation of wate		an electric source which
	a) 40.3 kJ per mol	b) 43.2 kJ per mol	c) 16.7 kJ per mol	d) 180.4 kJ per mol
403.		m in an expansion against a		
100.	a) $\Delta P \cdot \Delta V$	b) $-P \cdot \Delta V$	c) <i>Q</i>	d) V • ΔP
404.	,	H ₄ liberates 2.5 kcal of heat,	, •	,
	a) -2 kcal mol	b) -10 kcal mol $^-$	c) $2.5 \text{ kcal mol}^{-1}$	d) -5 kcal mol ^{-1}
405.	A gas expands isotherm	ally against a constant ex	kternal pressure of 1 atm	from a volume of 10
	dm ³ to a volume of 20 d	lm³. It absorbs 800 J of th	nermal energy from its su	ırroundings. The ΔU is
	a) - 312 J	b) +123 J	c) -213 J	d) +231 J
406.		n for water is 186.5 kJ	mol^{-1} . The entropy char	nge during vaorisation is
	kJ K ⁻¹ mol ⁻¹ .	L) 1.0	-) 1 F	1) 2 0
407	a) 0.5	b) 1.0	c) 1.5	d) 2.0
407.	ΔC_p for : $N_2(g) + 3H_2(g)$ a) $C_pNH_3 + C_pN_2 + C_pH_2$	\rightarrow 2Nn ₃ (g) is .		
	b) $C_p NH_3 - C_p N_2 - C_p H_2$	и		
	c) $2C_pNH_3 - C_pN_2 - 3C_p$			
400	d) $2C_p \text{ NH}_3 + C_p \text{N}_2 - 3C_p$			
408.	Which statement(s) is/ar a) $\left(\frac{\partial H}{\partial T}\right)_P - \left(\frac{\partial U}{\partial T}\right)_V = R$	e correct?		
			>	
	b) $\left(\frac{\partial H}{\partial T}\right)_P > \left(\frac{\partial U}{\partial T}\right)_V$	M.		
	c) $\left(\frac{\partial U}{\partial V}\right)_T$ for ideal gas is ze	ero		
	d) All of the above			
409.			2 mole of ideal gas is incre	ased from 1 litre to 10 litre,
	the ΔH for isothermal characteristics ΔH for isothermal characteristics.		WILLIAM	D 0 4017
410	a) 11.47 kJ	b) 4.98 kJ	c) 0	d) 2.49 kJ
410.	(g) + 2H2(g) → CH4(g) (g) + 4H(g) → CH4(g)	· •		
	$C(g) + 4\Pi(g) \rightarrow C\Pi_4(g)$ $CH_4(g) \rightarrow CH_3(g) + H(g)$	_		
	1 10, 0 10, 10	of C — H bond in kcal mol ⁻	¹ is ·	
	a) $\frac{X_1}{4}$	or dan modernmen	10 1	
	•			
	b) <i>Y</i>			
	c) $\frac{X_2}{4}$			
	d) <i>X</i> ₁			
411.	. The enthalpy of formation			
	a) $H^+(aq) + OH^-(aq) \rightarrow$			
	b) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2$	$O(l); \Delta H = -X_2 \text{ kJ}$		
	c) $CO_2(g) + H_2(g) \rightarrow CO$	$(g) + H_2O(l); \Delta H = -X_3 k$	xJ	
	d) $C_2H_2(g) + \frac{5}{2}O_2(g) \rightarrow 1$	(g) + $H_2O(l)$; $\Delta H = -X_3 k$ $2CO_2(g) + H_2O(l)$; $\Delta H = -k$	-X ₄ kJ	
412.	A gas can expand from	100 mL to 250 mL under		atm. The work done by
	gas is a) 30.38 I	b) 25 I	c) 5 kg I	d) 16 I
	a. วบ.วด l	VIZDI	CLOKYI	ui IO I

413. A system is changed from state A to state B by one path and from B to A by another path. If E_1 and E_2 are the corresponding changes in internal energy, then;				
a) $U_1 + U_2 = +\text{ve}$ b) $U_1 + U_2 = -\text{ve}$		d) None of these		
414. Three moles of an ideal gas expanded spontaneous				
a) Infinite b) 3 joules	c) 9 joules	d) Zero		
415. Which of the following is always negative for exother	, ,	u) 2010		
a) ΔH b) ΔS	c) ΔG	d) None of these		
416. In a flask colourless N_2O_4 is in equilibrium with	,	•		
heated at 100°C, the brown colour deepens and				
enthalpy, ΔH for this system is :	8	8		
a) Negative b) Positive	c) Zero	d) Undefined		
417. If gas at constant temperature and pressure expan		•		
a) Internal energy increases and then decreases	b) Internal energy incre	ases		
c) Internal energy remains the same	d) Internal energy decre			
418. If the enthalpy change for the reaction				
$CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HC$	l(g),			
$\Delta H = -25$ kcal. Bond energy of C–H is 20 kcal is	mol^{-1} greater than the bo	nd energy of C—Cl and bond		
energies of H—H and H—Cl are same in mag	gnitude, then for the rea	action : $\frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g) \rightarrow$		
$HCl(g); \Delta H = ?$,	2 2 3 2 2 3		
a) -22.5 kcal/mol b) -20.5 kcal/mol	c) = 32 5 kcal/mol	d) = 12.5 kcal/mol		
419. Internal energy is an example of	c) 32,3 Keai/ 11101	u) 12,5 Kear/ 1101		
a) Path function b) State function	c) Both (a) and (b)	d) None of these		
420. In a closed container, a liquid is stirred with a		-		
following is true?		imperature vimen or the		
a) $\Delta E = W \neq 0$, $q = 0$ b) $\Delta E = W = q \neq 0$	c) $\Delta F = 0$ $W = a \neq 0$	d) $W = 0$ $\Delta F = a \neq 0$		
421. In a reaction, ΔH and ΔS both are positive. In w				
// P PS 1 1	AT A TEXT AT A 1	s, the reaction would not be		
OLLAH FDO	CHITOIA	d) All of these		
a) $\Delta H > T \Delta S$ b) $\Delta S = \frac{\Delta H}{T}$	c) $\Delta H = T \Delta S$	u) In or these		
422. The bond dissociation energies of gaseous H ₂ , Cl ₂ a	and HClare 104, 58 and 103	kcal respectively. The		
enthalpy of formation of HClgas would be				
a) –44 kcal b) 44 kcal	c) –22 kcal	d) 22 kcal		
423. The internal energy change when a system goe	es from state A to B is 40	kJ/mol. If the system goes		
from A to B by a reversible path and returns to state A by an irreversible path, what would be the				
net change in internal energy?				
a) 40 kJ b) >40 kJ	c) <40 kJ	d) Zero		
424. The enthalpy of vaporisation of a substance is 840	•			
vaporisation is)/			
a) 4.8 J/mol/K b) 12 J/mol/K	c) 210 J/mol/K	d) 49 J/mol/K		
425. The ΔH_f^o of O ₃ , CO ₂ , NH ₃ and HI are 142.2 –393.3,		, ,, ,		
their increasing stabilities will be	, 1	1		
	c) O_3 , HI, NH_3 , CO_2	d) NH ₃ , HI, CO ₂ , O ₃		
426. For the reaction, C (graphic)	0) 03,111,1113, 002	a,, a e z, e 3		
$+\frac{1}{2}O_2(g) \rightarrow CO(g)$ at 298 K and 1 atm, $\Delta H = -26.4$ kcal. What is ΔE , if the molar volume of				
graphite is 0.0053 L?				
$(R = 0.002 \text{ kcal mol}^{-1} \text{ K}^{-1})$				
a) -26.7 kcal b) +26.7 kcal	c) -52.4 kcal	d) +52.4 kcal		

GPLUS EDUCATION

427	. For the reaction of one m	ole of zinc dust with one m	ole of sulphuric acid in a bo	omb calorimeter, ΔU and W		
	correspond to					
	a) $\Delta U < 0, W = 0$	b) $\Delta U = 0, W < 0$	c) $\Delta U > 0$, $W = 0$	d) $\Delta U = 0, W > 0$		
428	28. The quantity of heat measured for a reaction in a bomb calorimeter is equal to					
	a) Δ <i>G</i>	b) Δ <i>H</i>	c) <i>p</i> Δ <i>V</i>	d) Δ <i>E</i>		
429	For the reactions:					
	$C + O_2 \rightarrow CO_2$; $\Delta H = -$	393 kJ				
	$2Zn + O_2 \rightarrow 2ZnO; \Delta H$					
	which one is correct?					
	a) Carbon can reduce Zno	O to Zn				
	b) Oxidation of carbon is	not feasible				
	c) Oxidation of Zn is not	feasible				
	d) Zn liberates more hear	t than carbon during oxidat	ion			
430	The following two reaction	ons are known				
	$Fe_2O_3(s) + 3CO_{(g)} \rightarrow 2Fe_3O_{(g)} \rightarrow 2Fe_3O_{($	$e_{(s)} + 3CO_{2(g)};$				
	$\Delta H = -1$, , , , , , , , , , , , , , , , , , , ,				
	$FeO_{(s)} + CO_{(g)} \rightarrow Fe_{(s)} +$	- CO _{2(g)} ;				
	$\Delta H = -1$					
	The value of ΔH for the for	•				
	$Fe_2O_{3(s)} + CO_{(g)} \rightarrow 2Fe$	_				
	a) $+ 10.3 \text{ kJ}$	(3) · Z(g)				
	b) – 43.3 kJ					
	c) -10.3 kJ	di i				
	d) + 6.2 kJ					
431	•	essure remains constant thr	oughout a change is:			
	a) Adiabatic	b) Isochoric	c) Isobaric	d) Isothermal		
432	-	of water at 100°C, if molar h		=		
		b) 26.0 cal mol ⁻¹ K ⁻¹		d) $28.0 \text{ cal mol}^{-1}\text{K}^{-1}$		
433	Which is an extensive p					
	a) Temperature	b) Chemical potential	c) Gibb's free energy	d) Molar volume		
434	•	outylene is $-x$ kJ mol ⁻¹ . The		7 1 101011 1 01011110		
	$a) = \Delta E^{\circ}$	b) $> \Delta E^{\circ}$	c) = 0	d) $< \Delta E^{\circ}$		
435	Which of the following re		cj = 0	$u_j \setminus \Delta L$		
133	willen of the following re	action defines Δn_f .	1 1			
	a) $C(diamond) + O_2(g) \rightarrow CO_2(g)$		b) $\frac{1}{2}$ H ₂ (g) + $\frac{1}{2}$ F(g) \rightarrow HF(g)			
			d) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$			
	c) $N_2(l) + 3H_2(g) \to 2NI$	$H_3(g)$	d) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2$	₂ (g)		
436	The heat change for the r	reaction, $H_2O(l) \rightarrow H_2O(g)$	is called as :			
	a) Heat of vaporisation	b) Heat of solution	c) Heat of fusion	d) Heat of formation		
437	The law of conservation	of energy states that :				
	a) The internal energy of	a system is constant				
	b) The heat content of a system is constant					
	c) Energy is neither crea	ted nor destroyed				
	d) There is an equivalence between energy and mass					
438	Heat of neutralization of	HF is:				
	a) 1. kJ	b) > 57.32 kJ	c) $< 57.32 \text{ kJ}$	d) None of these		
439	9. From the following bond energies :					
	H—H bond energy: $431.37 \text{ kJ mol}^{-1}$ C = C bond energy: $606.10 \text{ kJ mol}^{-1}$					

C—C bond energy: $336.49 \text{ kJ mol}^{-1}$ C—H bond energy: 410.50 kJ mol⁻¹ Enthalpy for the reaction, H H will be : a) $553.0 \text{ kJ mol}^{-1}$ b) $1523.6 \text{ kJ mol}^{-1}$ c) $-243.6 \text{ kJ mol}^{-1}$ d) $- 120.0 \text{ kJ mol}^{-1}$ 440. The enthalpies of formation of organic substances can be conveniently determined from : a) Heats of combustion data b) Boiling point c) Melting point d) Heats of neutralisation 441. The free energy change for a reversible reaction at equilibrium is b) Small, negative d) 0 a) Large, positive c) Small, positive 442. In an irreversible process, the value of $\Delta S_{\text{system}} + \Delta S_{\text{surr}}$ is: a) +ve d) All of these b) –ve 443. A container has hydrogen and oxygen mixture in ratio of 4:1 by weight, then: a) Entropy of these gases increase b) Internal energy increases c) Internal energy of the gas decreases d) Entropy of the gases decrease 444. Equal volume of 1M HCl and 1 M H₂SO₄ are neutralised by dilute NaOH solution and x and y kcal of heat are liberated respectively. Which of the following is true? a) x = yb) x = 0.5 yc) x = 0.4 yd) None of these 445. Identify the intensive quantity from the following a) Enthalpy and temperature b) Volume and temperature d) Temperature and refractive index c) Enthalpy and volume 446. A mixture of hydrogen and chlorine on exposure to ultra violet sunlight reacts with explosion. The step involved in the initiation of the reaction is: a) $H_2 \rightarrow H^{\bullet} + H^{\bullet}$ b) $Cl^{\bullet} + Cl^{\bullet} \rightarrow Cl_2$ d) $Cl_2 \rightarrow Cl^{\bullet} + Cl^{\bullet}$ c) $H_2 + Cl_2 \rightarrow 2HCl$ 447. The amount of heat measured for a reaction in a bomb calorimeter is a) ΔG b) ΔH d) *p.*⊿*V* c) ΔE 448. The mathematical form of the first law of thermodynamics when heat (q) is supplied and W is work done by the system (+ve) is: a) $\Delta U = q + W$ b) $\Delta U = q - W$ c) $\Delta U = -q + W$ d) $\Delta U = -q - W$ 449. Which one of the following bonds has the highest average bond energy (kcal/mol)? a) S = 0b) $C \equiv C$ c) $C \equiv N$ d) $N \equiv N$ 450. If gas, at constant temperature and pressure expands then its a) Entropy increases and then decreases b) Internal energy increases c) Internal energy remains the same d) Internal energy decreases 451. For a reaction, $\Delta H = 9.08 \text{ kJ mol}^{-1}$ and $\Delta S = 35.7 \text{ JK}^{-1} \text{mol}^{-1}$. Which of the following statement is correct for the reaction? a) Reversible and isothermal b) Reversible and exothermic c) Spontaneous and endothermic d) Spontaneous and exothermic 452. The correct thermochemical equation is: a) $C + O_2 \rightarrow CO_2$; $\Delta H = -94$ kcal

b) $C + O_2 \rightarrow CO_2$; $\Delta H = +94 \text{ kcal}$

- c) $C(s) + O_2(g) \rightarrow CO_2(g)$; $\Delta H = -94$ kcal d) $C(s) + O_2(g) \rightarrow CO_2(g)$; $\Delta H = +94$ kcal 453. In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibbs's energy change (ΔG°) decreases sharply with increasing temperature? a) $Mg(s) + \frac{1}{2}O_2(g) \to MgO(s)$ b) $\frac{1}{2}$ C(graphite) + $\frac{1}{2}$ O₂(g) $\rightarrow \frac{1}{2}$ CO₂(g) c) $C(graphite) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ d) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ 454. The heat of formation of methane $C(s) + 2H_2(g) \rightarrow CH_4(g)$ at constant pressure is 18500 cal at 25°C. The heat of reaction at constant volume would be: d) 17904 cal a) 19096 cal b) 18798 cal c) 18202 cal 455. Minimum work is obtained when 1 kg of ... gas expanded under 500 kPa to 200 kPa pressure at 0°C. a) Chlorine b) Oxygen c) Nitrogen d) Methane 456. The temperature of the system decreases in an a) Adiabatic compression b) Isothermal compression c) Isothermal expansion d) Adiabatic expansion 457. The bond of energies of H–H, Br–Br and H–Br are 433, 192 and 364 kJ mol⁻¹respecively. The ΔH° for the reaction; $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ is: a) $-261 \, \text{kJ}$ b) $+ 103 \, \text{kJ}$ c) + 261 kJd) - 103 kJ458. The absolute enthalpy of neutralisation of the reaction $MgO(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2O(l)$ will be a) Greater than -57.33 kJ mol⁻¹ b) 57.33 kJmol^{-1} c) Less than -57.33 kJ mol⁻¹ d) -57.33 kJ mol⁻¹ 459. We believe in the laws of thermodynamics because they are b) Derived based on mathematical analysis a) Theoretical c) Empirical and nobody disproved d) Mere statements 460. The enthalpy of dissolution of $BaCl_2(s)$ and $BaCl_2 \cdot 2H_2O(s)$ are -20.6 and 8.8 kJ per mol respectively. The enthalpy of hydration for, $BaCl_2(s) + 2H_2O \rightarrow BaCl_2 \cdot 2H_2O(s)$ is b) -29.4 kJc) $-11.8 \, \text{kJ}$ d) 38.2 kJ a) 29.4 kJ 461. The enthalpies of the elements in their standard states are assumed to be a) Zero at 298 K b) Unit at 298 K c) Zero at all temperature d) Zero at 273 K 462. The change in entropy, ΔS is positive for an endothermic reaction. If enthalpy charge ΔH occurs at the same temperature *T*, then the reaction is feasible: b) When $\Delta H > T\Delta S$ c) When $\Delta H < T \Delta S$ d) Not feasible at all a) At all temperatures
- 463. If the enthalpy change for the transition of liquid water to steam is 30 kJ mol $^{-1}$ at 27°C, the entropy change
- for the process would be:
 - b) 10 J mol⁻¹ K⁻¹ a) $100 \text{ J mol}^{-1} \text{ K}^{-1}$ d) $0.1 \text{ J mol}^{-1} \text{ K}^{-1}$ c) $1.0 \text{ J mol}^{-1} \text{ K}^{-1}$
- 464. For the reaction, $C_3H_8(g) + 5O_2 \rightarrow 3CO_2(g) + 4H_2O(l)$ at constant temperature, $\Delta H \Delta U$ is : b) - 3RTd) - RT
- 465. The total amount of energy in the universe is fixed, but:
- a) Matter is increasing
 - b) Gravitation is decreasing
 - c) Disorder is increasing

d) Lightening is increasing

466. Which compound will absorb the maximum amount of heat when dissolved in the same amount of water? (Integral heats of solution at 25°C in kcal/mol of each solute are given in brackets):

- a) $HCl(\Delta H = -17.74)$
- b) $HNO_3(\Delta H = -7.85)$
- c) $NH_4NO_3(\Delta H = +16.08)$
- d) NaCl(Δ H = +1.02)

